

MASTER DISTRIBUTOR

Purveyors of a way of Liferm

WHO WE ARE

DEDICATED PROFESSIONALS HERE TO SERVE YOU

Huyett is a low-overhead manufacturer, master distributor, and importer of industrial fasteners \& components, and premium lifting hardware. Our corporate office is located just 50 miles from the geographic center of the United States. With multiple warehouse locations, we are two days shipping time from 60% of the country.

We were founded by a German immigrant over 100 years ago in a tin shed located in a place some call the Great American Desert. The experience of trying to work the land and make a life here has been formative to our culture and we are here to serve you.

Huyett has a complete machine shop and manufactures an array of fasteners and special assemblies. Our manufacturing facility is equipped to make exotic material products in Monel ${ }^{T M}$, Inconel ${ }^{T M}$, Carpenter ${ }^{\text {TM }} 20$, and other alloys.

FRIENDLY PEOPLE

WHO ARE READY TO HELP!

We serve our customers by reducing total costs through a combination of competitive sourcing, value-added services, and an inventory of more than 100,000 unique fasteners. We save our customers time and money by offering the opportunity to quote, order, ship, and receive a wide variety of parts on one purchase order.

We serve our partners by providing programs and opportunities to facilitate the achievement of business and professional goals. We have forged relationships with key manufacturers on a worldwide basis so that you can receive the benefit of global sourcing on standard items, and cost effective solutions on short run parts that are made right here in the USA.

We serve our employees by creating a work environment that is productive, exciting, and full of possibility. We help our employees meet their professional and personal goals through training programs, mentoring, and "employer of choice" pay and benefits.

We serve our community by working with organizations and individuals to create solutions for their local needs. We are committed to helping education, family-life, and local nonprofit organizations in a manner that improves quality of life.

HOW WE DO IT

WE MAKE YOUR LIFE EASY!

With over 100,000 parts in one place, and a complete machine shop to manufacture special orders, you can consolidate items normally purchased from multiple suppliers into one box.

- In stock orders ship next business day.
- Business hours: 7:00 a.m. to 5:00 p.m. CST, Monday thru Friday.
- All parts ship from U.S. Locations, on one PO, along with the
"Pack List That Will Change Your Life.TM"

MULTTPLE WAREHOUSE LOCATTONS

PREFACE

Locating What You Need 4
Introduction. 6
Getting the Right Fit. 8
Industry Uses . 10
Types of Alloy Steel. 12
Types of Stainless Steel 13
Measuring Steel Strength. 14
Types of Finishes . 16
Types of Specifications 18
Manufacturing Processes 20

KEY STOCK

Key Stock Features 22
Key Stock Types 23
Quick Reference Guide 24
Material Codes 26
Key Stock Standards 27
Cold Finished Steel - Imperial 28
Metric 30
DIN Tolerances 32
Moltrup 34
Stainless Steel \& Nonferrous - Imperial 36
Step Key 38
Round - Imperial 40
Round - Metric: DIN 671. 42
Hex 44
Key Stock Assortments 46
MACHINE KEYS
Machine Key Features 48
Machine Key Types 49
Design \& Use 50
Selecting the Right Key 52
Quick Reference Guide 54
Cold Finished Steel - Imperial 56
Moltrup 58
Cold Finished Steel - Metric 60
Stainless \& Nonferrous - Imperial 62
Stainless Steel - Metric 64
Imperial Tolerances 66
Metric Tolerances 68
Gib Head - Imperial 70
Gib Head - Metric: DIN 6887 74
Woodruff - Imperial 78
Woodruff - Metric. 82
Hi-pro 84
Machine Key Assortments 88

SHAFIS

Shaft Features

Shaft Features

Shaft Features

Shaft Features

Shaft Features 92 92 92 92 92

Shaft Types.

Shaft Types.

Shaft Types.

Shaft Types.

Shaft Types. 93 93 93 93 93

Quick Reference Guide

Quick Reference Guide

Quick Reference Guide

Quick Reference Guide

Quick Reference Guide 93 93 93 93 93
Keyed - Imperial
Keyed - Imperial
Keyed - Imperial
Keyed - Imperial
Keyed - Imperial 94 94 94 94 94
Keyed - Metric
Keyed - Metric
Keyed - Metric
Keyed - Metric
Keyed - Metric 96 96 96 96 96
SHAFIS
SHAFIS
SHAFIS
SHAFIS
SHAFIS
TOOL STAEAL
Tool Steel Features 98
Tool Steel Types 99
Quick Reference Guide 99
Ground Stock 100
Drill Rod - Fractional Inch. 102
Drill Rod - Letter \& Number 104
Drill Rod - Metric 106
SHINS \& SPACERS
Shim \& Spacer Features 108
Shim \& Spacer Types 109
Design \& Use 110
Quick Reference Guide 112
Arbor Shim 114
Arbor Spacer 116
DIN 988 Shim Washer 118
DIN 988 Support Ring 124
Collar 126
Lengthening 128
Shortening 130
Slotted 132
Flat Shim Stock - Metal. 134
Flat Shim Stock - Plastic 136
Laminated Flat Shim Stock 138
Rolled Shim Stock - Imperial 140
Rolled Shim Stock - Metric. 142
SHAFT COLLARS
Shaft Collar Features. 146
Shaft Collar Types. 147
Quick Reference Guide 148
Measuring 149
Set - Imperial 150
Set - Metric 152
Single-split - Imperial 154
Double-split - Imperial 154
Single-split - Metric 156
Double-split - Metric 156
Threaded 158
Shaft Collar Assortments 160

When You Choose Huyett, You Get...

COUNTRY OF ORIGIN - KEY STOCK \$ MACHINE KEYS

Huyett produces precision key stock and machine keys from raw materials into useable lengths, dimensions, and finishes. This substantial transformation is performed in the U.S. and can include milling, cutting, tumbling, plating, and heat treating. The raw material, based on availability and quality requirements, is sourced from mills that meet the highest quality and tolerance standards and can come from countries that would include the U.S. , Canada, Germany, Taiwan, and Italy. Due to the substantial transformation performed by our facilities in the U.S. and the associated costs, these products are designated as Made in the USA. Raw Material Country of Origin is available upon request along with the potential processing charge, at the lot level.

Visit huyett.com to download Material, Compliance, and Rome exclusions apply

LOCATING WHAT YOU NEED

This catalog represents years of research and experience by Huyett staff. In addition to the technical information included to make it easy for you to order the parts you need, we have provided informative and educational details about product lines and unique parts. Many of our power transmission and motion control (PT/MC) components are available in imperial and metric sizes and can be purchased in preassembled boxed assortments or customized to meet your needs.

LOCATING WHAT YOU NEFD

ILL INFORMATION IS ADDITIONAL INF HUYETT.COM

INTRODUCTION

Huyett stocks and manufactures a wide range of fasteners for the PT/MC Industry that securely hold or interlock components to keep your machines and manufacturing lines moving. The following is a brief introduction to some basic power transmission concepts.

WHAT IS POWER TRANSMISSION?

In its simplest form, power transmission is the transfer of energy from one place to another where it is then put to work. This transfer of power, also known as mechanical work, is a system of integrating gears and shafts that provide speed and torque conversion using basic principles of physics. To the best of our knowledge, the mechanical gear - a rotating machine part with cut teeth or cogs, which meshes with another toothed part in order to transmit torque - was invented sometime around 300 B.C. by Greek mechanics in Alexandria. In the centuries since, this simple concept has enabled the invention and evolution of all sorts of machinery and vehicles.

GEARS \& SPROCKETS

Adjacent, interlocked gears rotate at different speeds in opposite directions, with the smaller gear rotating more quickly.

Similarly, sprockets are profiled wheels that connect with a chain or track. They differ from gears in that they do not touch. In this configuration, both sprockets turn in the same direction as the chain that connects them.

Special gear and sprocket configurations including spur gears, worm drives, helical rack and pinion gears are used to transfer

FUNDAMENTALS
 FORCE

The push or pull on an object that results in a change of shape, speed, or location.

FRICTION

Friction is a force of resistance that acts in the direct opposite of another force to oppose any attempt to initiate motion. Friction must be consistently overcome in order for motion to occur.

TORQUE

Just as force is a push or a pull, torque is more of a twist. It is the tendency of an object to rotate as a result of a force being applied at some distance away from the center of rotation. For instance, pushing or pulling on the wrench below applies force that creates torque to loosen or tighten a nut on a bolt.

Should a power transmission component become damaged or break from stress and wear, the potential for catastrophic and collateral damage is enhanced in welded assemblies because of the linkage of the components.

PROTECTIVE BENEFIT

In normal operation, a keyed assembly allows primary gears and drive shafts to turn together.

However, if forces exceed design limits, the machine key may shear preventing damage to other components.
Inexpensive machine keys effectively act as safety stops to protect expensive mechanical components.

CRITICAL DESIGN \& MANUFACTURING CONSIDERATIONS

Key stock and machine keys must be made to proper specifications for each application. Design Engineers must account for load, material, and heat treatment to prevent placing users in potentially dangerous situations or subjecting machine components to stresses that could result in property damage if parts shear. For additional information about shear strength, see page 14.

GETTING THE RIGHT FIT

When two parts are designed to be pieced together, there may be play or looseness between them or they may be tight to the point they are nearly bonded. This degree of tightness or looseness is referred to as "fit." The fit between a shaft, machine key, and the mating component can be critical to the operation and safety of the assembly.

FIT \$ TOLERANCE

Before the age of the assembly line and interchangeable parts, skilled craftsmen known as "fitters" were required to piece together mating parts. Since the parts were usually hand-crafted, production was limited to one assembly at a time. The craftsman employed a system of cut, try, cut again, try again to eventually achieve proper fit between components.
With the advent of the assembly line, it became necessary to supply parts that could be used interchangeably, so that any one like part could be used to complete the component. Since it is extremely difficult to produce exactly identical parts, a system of tolerances and specifications was developed to determine when parts were close enough to be interchangeable.

NOMINAL SIZING TOLERANCES

Tolerance is the limit of how much a part can deviate from its nominal or named size. Tolerances can deviate less than the nominal size (referred to as undersize), greater than the nominal size (referred to as oversize), or both.

ANSI B17.1 KEYS § KEY WAY FIT CLASSES

Sometimes called a clearance fit, the key width will be slightly smaller than the key way allowing the shaft and component piece to slide over each other.

Also known as a transition fit, the key width and the key way can have a slight clearance fit or a slight interference fit. Generally this fit is sufficient to hold mating parts together while still allowing for disassembly.

CLASS 3
This is an interference fit, meaning the key will be larger than the key way and will encounter interference during installation. Some means of force or the use of temperature differential is required for installation. ANSI B17.1 does not have specific standards for this class of fit.

INDUSTRIAL MASTER DISTRIBUTOR

GETTING THE RICHT FIT

Each application will determine the type of fit required. Should it be a loose fit for easy disassembly? Does it need to precisely hold a component in place? Is it a bearing joint that requires movement? Will it be a semi-permanent bond? The dimensional tolerances of a given part must be taken into account when determining the correct fit for an application.

TYPES OF FIT

CLEARANCE FIT

In a clearance fit, a space will exist between the two mating parts. The difference in sizes is referred to as a positive difference. The minimum clearance will be the difference between the maximum tolerance of the inserted part and the minimum tolerance of the receiving part.

LOOSE FIT

Used in applications that do not require precision, such as pulleys, agricultural equipment, or other applications requiring frequent disassembly.

RUNNING FIT

This type of clearance fit has just enough space to maintain a film of lubrication between the mating parts. Most bearings will require this type of fit.
SLIDE FIT

Also known as a medium fit, this fit is used when precision is required. It is used on slides, slide valves, and some automobile part assemblies.

TRANSITION FIT

In a transition fit, a space may exist or the parts may collide. If the inserted part is at maximum tolerance and the receiving part is at minimum tolerance an interference will occur. However, a clearance fit will result if the inserted part is at minimum tolerance and the receiving part is at maximum tolerance.

> PUSH FIT

Also known as a snug fit, this fit has zero allowance between the mating parts and will require a slight pressure to install. This is a good fit where vibration may be encountered.
SHRINK/FORCE FIT

This fit is required when the two mating parts are to be rigidly fixed so that they move together. It will require high pressure or expansion by heating to install.
WRINGING FIT

A small negative allowance is allowed between the two mating parts requiring pressure to assemble. It is used on flushed bolts, driven bushings, and electric motors.

INTERFERENCE FIT

In an interference fit, the tolerance zones of both parts will collide with each other regardless if they are at minimum or maximum. The degree to which they collide will determine the strength of the fit. An interference fit will require either force or temperature change to facilitate installation.

SHRINK FIT

Also known as a heavy force fit, the receiving part is heated to cause expansion allowing the inserted part to fit. This is commonly used in rims and heavy duty assemblies such as railway wheels.

MEDIUM FORCE FIT

With this fit, a substantial amount of pressure is required to force the parts together. This is used for car wheels, dynamo armatures, and other semipermanent joins.

tight FIT

Also known as press fit, the parts can be mated by hand with a hammer or light pressure. It is used in keyed pulleys, rocker arms, and applications not requiring a large force.

INDUSTRY USES

Nearly every engine, motor, gearbox, differential, gear reducer, and transmission uses power transmission components and mating mechanical components such as shafts, gears, sprockets, and pulleys to turn energy into work. From key stock to machine keys, shafting to shaft collars, and balls to bushings, Huyett offers a complete line of fasteners and industrial components to suit your needs.

DURABLE SOLUTIONS FOR EVERY NEED

KEY STOCK \ddagger MACHINE KEYS

Key stock and machine keys may shear under stress to protect people and expensive equipment.

Step key stock is used for repair and maintenance operations to fix broken key ways.

Woodruff keys are designed to be installed deep into a shaft and can not fall out once installed.

Gib keys are installed by pounding the key in the shaft until a snug fit is achieved.

SHAFTS \ddagger TOOL STEEL

A hub with an integral key allows a keyed shaft to be used without key stock or a machine key.

Keyed shaft paired with key stock or a machine key assemble components in a non-permanent manner.

SHIMS, SHAFT COLLARS, \$ SPACERS

Arbor shims are installed on either side of a cutting tool to take up slack.

Slotted shims are used on assembled machine components for alignment and balance.

Ground flat stock is used to produce knife blades, shear blades, chisels, and other precision machining devices.

As its name suggests, drill rod is frequently used to make drill bits, taps, files, hammers, and other hand tools.

Double-split shaft collars can be installed where components will not allow axial installation.

Set shaft collars can be used as a stop on a drill bit to control the depth of the drilled hole.

Precision balls are highly precise balls that are used in ball bearing assemblies and in kinematic mounting applications.

Flange bearings allow the shaft to slide or spin freely within the bearing.

Thrust bearings are used where rotating objects will create lateral forces.

Sleeve bearings are used in applications with light loads and low rotational speeds.

TYPES OF ALLOY STEEL

The following information should be considered only as a basic guideline; the data should not be considered as absolute. For specific applications, proper testing is required. The hardness of a metal is determined by its resistance to deformation, indentation, or scratching. Rockwell hardness is the most common measure of a metal's hardness. Soft steels are usually measured using the Rockwell B scale while harder steels and deep case hardened steels are usually measured on the Rockwell C scale. Additionally, the size of the piece can affect the hardness rating.

COMMON GRADES OF ALLOY STEELS

1018

Heat treating in contact with carbon (carburizing) hardens the surface of this low-carbon steel. It is easy to cold-form, bend, braze, and weld. Rockwell hardness is B 71 . Melting point is $1,538^{\circ} \mathrm{C}$ $\left(2,800^{\circ} \mathrm{F}\right)$. Yield strength is $45,000 \mathrm{psi}$. It is commonly used in shafts, spindles, pins, rods, sprockets, and component parts such as clevis pins, straight pins, machine keys, and key stock.

$1 \ominus 45$

This medium carbon steel is stronger than 1018 and is slightly more difficult to machine and weld. It can be through hardened or case hardened. Rockwell hardness is B84. Melting point is $1,538^{\circ} \mathrm{C}$ $\left(2,800^{\circ} \mathrm{F}\right)$. Yield strength is 65,000 psi. It is used in gears, shafts, axles, bolts, studs, clevis pins, machine keys, and key stock.

A36

General purpose carbon steel is suitable for welding and mechanical fastening. Rockwell hardness is B 68 . Melting point is $1,094^{\circ} \mathrm{C}$ $\left(2,100^{\circ} \mathrm{F}\right)$. Yield strength is $36,000 \mathrm{psi}$. This is used primarily for structural and commercial grade steel.

12L14

A low carbon steel that has excellent machining characteristics and good ductility that makes it easy to bend, crimp, and rivet. It is very difficult to weld and cannot be case hardened. Rockwell hardness is $\mathrm{B} 75-\mathrm{B} 90$. Melting point is $1,538^{\circ} \mathrm{C}\left(2,800^{\circ} \mathrm{F}\right)$. Yield strength is $60,000-80,000$ psi. This grade can be used for grease fittings, clevis pins, and custom pins.

1144

A medium carbon, resulferized steel with free-machining qualities. 1144 steel heat treats better than 1045 steel. Stress relieving allows it to obtain maximum ductility with minimum warping. Rockwell hardness is B97. Melting point is $1,510^{\circ} \mathrm{C}\left(2,750^{\circ} \mathrm{F}\right)$. Yield strength is 95,000 psi. Frequently used in keyed shafts, clevis pins, and detent pins.

414θ ALLOY

Also called "Chrome-Moly" steel. Ideal for forging and heat treating, 4140 alloy is tough, ductile, and wear resistant. Rockwell hardness is 892 . Melting point is $1,510^{\circ} \mathrm{C}\left(2,750^{\circ} \mathrm{F}\right)$. Yield strength is $60,000-75,800 \mathrm{psi}$. It is the most common steel and is used in virtually all industries and applications. Common uses include clutch keys, clevis pins, and military clevis pins.

414θ ASTM-A193 GRADE B7 ALLOY

Similar to 4140 alloy, but it is already quenched, tempered, and stress relieved. Maximum Rockwell hardness is C35. It is commonly used for threaded rod.

863θ ALLOY

This alloy is tough yet ductile. It responds well to heat treating, exhibits superb core characteristics, and has good weldability and machining properties. Maximum attainable Rockwell hardness is C50. Melting point is $1,538^{\circ} \mathrm{C}\left(2,800^{\circ} \mathrm{F}\right)$. Yield strength is $79,800 \mathrm{psi}$. This grade is frequently used in machine keys, woodruff keys, gear drive keys, and key stock.

CARE \$ HANDLING OF PLAIN FINISH PARTS

3θ-DAY LIMITED WARR,ANTY FOR SURFACE FINISH

A special sealer and treatment is applied to all plain finish parts to prevent corrosion, and specially formulated plastic liners are used to protect parts from the atmosphere. It is vital that the following handling instructions be maintained:

1. Inspect containers upon receipt.
2. Do not remove parts from original packing until ready for use.
3. After opening containers, reroll the inner liner and reclose the box for storage.
4. When touching plain finished parts, wear neoprene, latex, or thick cotton gloves to prevent hand oils from contacting the surface of the parts.
5. Avoid allowing human sweat or any other type of contaminant to contact the surface of the parts.

Surface corrosion can appear in as little as 24 hours if plain finish parts are not handled correctly, especially during the months of June, July, August, and September in North America. Improper handling will void any and all warranties.

To learn more, visit:
HUYETT.COM/HANDLING

TYPES OF STAINLESS STEEL

Stainless steel is the term used for grades of steel that contain more than 11% chromium, with or without other alloying elements. Stainless steel resists corrosion, maintains its strength at high temperatures, and is easily maintained. It is used predominately in the automotive, aerospace, and construction industries.
There are numerous grades of stainless steel which divide into four major groups:

- 100 series: austenitic general purpose stainless steel
- 200 series: austenitic chromium/nickel/manganese alloys
- 300 series: austenitic chromium/nickel alloys
- 400 series: ferritic and martensitic chromium alloys.

18-8 IS NOT A SPECIFICATION FOR STAINLESS STEEL
HUYETT CONSIDERS 18-8 TO BE ANY $3 \theta \theta$ SERIES STAINLESS STEEL

Additional information can be found in our Engineering Handbook, visit huyett.com/catalogs to download a copy.

COMMON GRADES OF STAINLESS STEEL

$3 \theta 2$

A common heat-resisting stainless steel, 302 is austenitic, non-magnetic, extremely tough, and ductile. Cold working will dramatically increase its hardness. It is amenable to stamping, spinning, and wire forming. 302 is commonly used for washers, springs, screens, and cables. It can be found in bridge pins, spring pins, and spiral rings.

$3 \theta 3$

303 is a popular free-machining stainless steel providing excellent speed and feed capabilities. 303 is used extensively in the screw and machining industries to make hardware fasteners such as lock nuts, valve parts, nozzles, and trim. It can also be used for keyed shafts, pins, and grease fittings.

$3 \ominus 4$

304 was the first formulation of austenitic stainless steel and is the most commonly specified grade, accounting for more than half of the stainless steel produced in the world. This grade withstands ordinary corrosion in architecture, is durable in typical food processing

environments, and resists most chemicals. 304 is available in virtually all product forms and finishes and is used for cookware, appliances, sinks, and tabletops. It can be found in bridge pins, thread inserts, hose clamps, and spring pins.

316

Commonly referred to as marine grade stainless steel, this austenitic stainless steel contains $2 \%-3 \%$ molybdenum (whereas 304 has none). The inclusion of molybdenum gives 316 greater resistance to various forms of deterioration. It is well-suited for extreme situations such as laboratory equipment, chloride environments, and sub-zero temperatures. 316 is frequently used for chemical, food, paper, mining, pharmaceutical, and petroleum equipment. It is one of the most common stainless steels and can be found in most types of pins, hose clamps, keyed shafts, threaded rod, machine keys, and key stock.
martensitic steels. It is a low-cost, heattreatable grade suitable for non-severe corrosion applications. It is used for cutlery, turbine blades, bushings, valve components, fasteners, screens, kitchen utensils, and spring pins.

416

This was one of the first free-machining stainless steels. It has excellent machinability and non-galling characteristics and is magnetic. It is used for nuts, bolts, screws, gears and pinions, valve trim, shafts, axles, dowel pins, and key stock.

IDENTIFYING $3 \theta \theta$ SERIES

Chemical Testing

Place a drop of 20% nitric acid solution on a cleaned portion of the specimen.

Stainless steel will remain unstained

Carbon Steel will turn dark

Mechanical Testing

Hold the specimen with pliers and place it against a grinding wheel.

Stainless steel will make curved tails

Carbon steel will look like

MEASURING STEEL STRIENGTH

Determining the strength of steel is an examination of the relationship between external forces applied to steel and the resulting deformations and stresses. These forces are produced by the action of gravity, by accelerations and impacts of moving parts, by gases and fluids under pressure, and by the transmission of mechanical power. They can occur separately, in combination, or progressively. Time is also a critical element in determining the effects of external forces - a force may be static or change so slowly that its maximum value can be treated as if it were static, it may be suddenly applied, as with an impact, or it may have a repetitive or cyclic behavior.

STRESS

Stress is defined as force per unit area and in the U.S. is usually expressed in pounds per square inch (psi). Tensile stress will stretch or lengthen steel. Compressive stress will compress or shorten steel. Shearing stress will break or tear steel into pieces. Tensile and compressive stresses always act at right angles to the applied force; shearing stresses always act in the same plane.

TYPES OF STRESS

COMPRESSIVE STRESS Pushes together

SHEARING STRESS Pushes from opposite sides

faticue

When steel is subjected to many cycles of stress reversal or fluctuation (variation in magnitude without reversal), failure may occur, often at levels considerably less than if the stress were constant. Fatigue properties are determined by subjecting test specimens to stress cycles and counting the number of cycles to failure.

DUCTILITY

Ductility is the ability of steel to undergo permanent changes in shape (such as stretching into a wire) from tensile stress without fracturing at room temperature or losing its toughness. Brittleness is the opposite of ductility. Malleability refers to deformation under compressive stress (such as being pressed into a sheet). Ductility is sometimes used to refer to both types.

TESTING \ddagger MEASURING TENSILE STRENGTH

Yield Strength: the strength rating before deformation starts

Sample is pulled from opposite ends to the point of deformation

Tensile Strength: the strength rating before breaking
Elongation: the percentage of change in length

Sample is pulled apart; permanent deformation and eventual breakage occurs

Sample mounted in test fixture with no force applied

MEASURING STEEL STRENGTH

When steel is subjected to many cycles of stress reversal or fluctuation (variation in magnitude without reversal), failure may occur, even though the maximum stress at any cycle is considerably less than the value at which failure would occur if the stress were constant. Fatigue properties are determined by subjecting test specimens to stress cycles and counting the number of cycles to failure. Fatigue is tested on fixtures that are unique to the application. These tests should account for all modes of failure, including thermal causes and the presence of corrosive elements.

MODES OF FATIGUE FAILURE

LOW-/HIGH-CYCLE

This fatigue process covers cyclic loading in two significantly different domains with different physical mechanisms of failure. "High-cycle fatigue" is characterized by relatively low cyclic loads, strain cycles confined largely to the elastic range, and long lives or a high number of cycles to failure. "Low-cycle fatigue" or cyclic strain-controlled fatigue, has cyclic loads that are relatively high, significant amounts of plastic strain induced during each cycle, and short lives or a low number of cycles to failure.

THERMAL

Cyclic temperature changes in a machine part will produce cyclic stresses and strains if natural thermal expansions and contractions are either wholly or partially constrained. These cyclic strains produce fatigue failure just as though they were produced by external mechanical loading. When strain cycling is produced by a fluctuating temperature field, the failure process is termed "thermal fatigue."

CORROSION

Corrosion fatigue is a failure mode where cyclic stresses and a corrosion producing environment combine to initiate and propagate cracks in fewer stress cycles and at lower stress amplitudes than would be required in a more inert environment. The corrosion process forms pits and surface discontinuities that act as stress raisers to accelerate fatigue cracking. The cyclic loads may also cause cracking and flaking of the corrosion layer, baring fresh metal to the corrosive environment. Each process accelerates the other, making the cumulative result more serious.

SURFACE OR CONTACT

Surface fatigue failure is usually associated with rolling surfaces in contact, and results in pitting, cracking, and spalling of the contacting surfaces from cyclic contact stresses that cause shear stresses to be slightly below the surface. The cyclic subsurface shear stresses generate cracks that propagate to the contacting surface, dislodging particles in the process.

TESTING \$ MEASURING SHEAR STRENGTH

Shear strength is tested by measuring the force necessary to sever a sample into two pieces for single shear, or three pieces for double shear. In a single shear test the workpiece is supported on only one end whereas in a double shear test the workpiece is supported from both ends which requires greater force to break a middle piece free. Both tests result in strength ratings that categorize the metal.

SINGLE SHEAR
Creates one fracture

DOUBLE SHEAR Creates two fractures

TYPES OF FINISHES

COMMON PLATINGS AND FINISHES

PLATING, COATING, OR FINISH	FOR USE ON	DEGREE OF CORROSION RESISTANCE	CHARACTERISTICS	RoHs COMPLIANT
RUST INHIBITORS	All metals	Varies with type	Oils, greases, etc. Vary in color and film thickness. Usually applied to bare carbon steel. Used to protect parts in temporary storage.	Huyett uses RoHS compliant rust inhibitor
ZINC, ELECTROPLATED	All metals	Fair	Blue to blue-white-gray color.	RoHS compliant without supplementary treatments
CADMIUM, ELECTROPLATED	Most metals	Excellent	Bright, silver-gray, or black finish. Particularly effective corrosion protection in marine applications. Used for decorative purposes. High lubricity.	Not RoHS compliant
CLEAR CHROMATE FINISH	Zinc and cadmium plated parts	Very good to excellent	Clear bright or iridescent chemical conversion coating applied to plated parts to enhance corrosion protection, coloring, and paint bonding.	Types II, III, IV are not RoHS compliant
CLEAR CHROMATE FINISH	Zinc plated parts	Very good to excellent	Clear bright or iridescent chemical conversion coating applied to plated parts to enhance corrosion protection, coloring, and paint bonding.	Types V and VI are RoHS compliant
DICHROMATE \ddagger COLOR CHROMATE	Zinc and cadmium plated parts	Very good to excellent	Yellow, brown, green, olive drab, blue, gold, bronze, or iridescent colored coating. Same as clear chromate.	Not RoHS compliant
BLACK OXIDE	Most Metals	Limited	Dark brown to black in color. Minimal dimensional impact. May be enhanced with oil or wax for better corrosion resistance.	RoHS compliant RoHS
ZINC OR MANGANESE PHOSPHATE	Steel	Good	Black in color. Added protection when oiled with a nondrying petroleum oil containing corrosion inhibitors. Good lubricity.	Not RoHS compliant when rinsed with dichromate supplementary treatment
COLOR PHOSPHATE COATINGS	Steel	Superior to regular phosphate and oiled surfaces	Chemically produced color coating. Available in blue, green, red, purple, etc.	Not RoHS compliant when rinsed with dichromate supplementary treatment
MECHANICALLY DEPOSITED ZINC	Steel	Very good	Dull gray, smooth finish. Corrosion protection depends on coating thickness. Good coverage in recesses and thread roots.	RoHS compliant when trivalent passivated
PASSIVATING	Stainless Steel	Excellent	Chemical treatment. Removes iron particles and produces a passive or corrosion resistant surface.	RoHS compliant

HUYET

ENVIRONMENTAL CONCERNS

Huyett is committed to maintaining the safety of our environment. The processes for plating and coating steels have the potential of introducing harmful chemical substances to the environment and are strictly controlled. Huyett complies with all environmental regulations and laws which apply to our products and services. Learn more at huyett.com/quality.

RoHS - RESTRICTION OF HAZARDOUS SUBSTANCES

RoHS

2002/95/EC COMPLIANCE

European Union legislation restricting the use of hazardous substances in electrical and electronic equipment (RoHS Directive 2002/95/ EC) and promoting the collection and recycling of this equipment (WEEE Directive 2002/96/ EC) has been in force since February 2003. The legislation provides for the creation of collection schemes where consumers return their used e-waste free of charge. The objective of these schemes is to increase the recycling and/or re-use of these products. It also requires heavy metals such as lead, mercury, cadmium, and hexavalent chromium and flame retardants such as polybrominated biphenyls (PBB) or polybrominated diphenyl ethers (PBDE) to be substituted by safer alternatives.

Inadequately treated e-waste poses environmental and health risks. In December 2008, the European Commission therefore proposed to revise the directives on electrical and electronic equipment in order to tackle the fast increasing waste stream of these products. The aim is to increase the amount of e-waste that is appropriately treated and to reduce the volume that goes to disposal. The aim of the RoHS recast was also to reduce administrative burdens and ensure coherency with newer policies and legislation covering, for example, chemicals and the new legislative framework for the marketing of products in the European Union. The RoHS Recast Directive was published in the Official Journal on July 1, 2011.

ZINC ELECTROPLATING

ZINC PLATING

Due to its low cost, versatility, corrosion resistance, and attractive appearance, zinc plating is one of the most common types of electroplating and serves as a barrier to oxidation for iron, steel, and other metals. Combined with nickel, cobalt, tin, or iron alloys, zinc forms a coating on the base metal that when exposed to corrosion sacrifices itself to delay the formation of rust on bare metal even after portions of the coating have been dissolved, scratched, or punctured.

VERSATILITY OF ZINC PLATING

Additionally, it provides excellent receptivity for chromate conversion coatings and is a safer alternative to metal plating processes that use toxic materials such as cadmium. It is ductile and offers excellent adhesion and provides an effective undercoat for paint.

ZINC PLATING
One of the most common types of electroplating

TYPES OF SPECIFICATIONS

While it would be ideal to have one universal standard of measurement and production guidelines to ensure consistency, compatibility, and standardization of industrial non-threaded fasteners, there are more than 25 Standards Developing Organizations (SDOs) worldwide in addition to the International Organization for Standardization (ISO). ISO standards adopted by one SDO may contain variations that substantially alter them from ISO documentation. The chart below indicates the Huyett parts that are compliant with or exceed these standards.

ITEM DESCRIPTION	PAGE	APPLICABLE SPECS	SPEC DESCRIPTION	IMAGE
UNDERSIZE KEY STOCK	Page 22	ANSI B17.1; ANSI-AGMA 9002-B04; ASTM A108; ASTM A276; ASTM A29; ASTM A582	Undersize key stock is material with a tolerance below its nominal or named size. It is typically used in aftermarket or one-off applications in the field.	UNDERSIZE (-)
	Page 30	DIN 174; DIN 178; DIN 6880; DIN EN 10088-3; DIN EN 10277-2		
OVERSIZE KEY STOCK	$\begin{aligned} & \text { Pages } \\ & 28 \& 36 \end{aligned}$	ANSI B17.1; ASTM A276; ASTM A29	Oversize key stock is material with a tolerance above its nominal or named size. It is typically used in aftermarket or one-off applications in the field.	OVERSIZE (+)
	Page 30	Aligned with industry standard for metric key stock		
UNDERSIZE MACHINE KEYS	Pages 56 \& 62	ANSI-AGMA 9002-B04; ANSI B17.1	Undersize machine keys are the actual size of material with a tolerance range slightly under the nominal based on material selected. Machine keys are available in two styles: form A (European standard with both ends round), or form B (most common imperial standard with square ends on both), and are cut to a specified length to fit specific application needs.	UNDERSIZE (-)
	Pages 60 \& 64	DIN 6885		
OVERSIZE MACHINE KEYS	Pages 56 \& 62	ANSI-AGMA 9002-B04; ANSI B17.1	Oversize machine keys are the actual size of material with a tolerance range slightly above the nominal based on material selected. Machine keys are available in two styles: form A (European standard with both ends round), or form B (most common imperial standard with square ends on both), and are cut to a specified length to fit specific application needs.	OVERSIZE (+)
$\begin{aligned} & \text { WOODRUFF } \\ & \text { KEYS } \end{aligned}$	Page 78	ANSI B17.1	This half-moon shaped key is intended for use on shaft assemblies where milling a key way near stress-concentration prone shaft shoulders is not desirable.	
HI-PRO KEYS	Page 84	ANSI B17.1, High Profile	Hi-pro keys are standard woodruff keys with the added feature of anti-rock "feet." These feet keep the key from rolling in the key way and improve assembly efficiency. They are used to lock pulleys and gears to transmission shafts.	

TYPES OF SPECIFICATIONS

ITEM DESCRIPTION	PAGE	APPLICABLE SPECS	SPEC DESCRIPTION	IMAGE
GIB HEAD KEYS	Page 70	ANSI B17.1; DIN 6887	The taper on the gib head keys allows for a tight fit between the hub and the shaft during installation. The notched head provides leverage that makes it easy to remove the part for maintenance.	
KEYED SHAFT	Page 94 Page 96	ANSI B17.1 BS 4235	Keyed shafting is round shafting that has a key way milled the full length of the shaft. The key way is cut according to ANSI B17.1 standards and is directly aligned to the diameter of the shaft. Used in applications where a non-permanent assembly is desired for maintenance purposes.	
DRILL ROD	Page 102	ASTM A681; ASTM A686	Depending on application needs, drill rod is typically used to fabricate tools, dies, or fixtures in one-offs or aftermarket applications.	
GROUND STOCK	Page 100	ASTM A681	Depending on application needs, ground stock is typically used to fabricate tools, dies, or fixtures in one-offs or aftermarket applications.	
HEX KEYS (ALLEN WRENCHES)	Page 162	ASME B18.3	A full piece of hex material with a bent " L " arm on one end for use in tight spaces. Typically used to aid in installation, maintenance, or removal of hex head set screws and cap screws. Available in common imperial and metric hex sizes.	N
	Page 163	DIN 911		
PRECISION BALLS	Page 177	ABMA STD-10	Precision balls are made of full hardened steel, special steels, and other metallic or non-metallic materials for specific applications or general industrial use.	
	Page 178	DIN 5401		

MANUFACTURING PROCESSES

Huyett is unique in the breadth of its manufacturing operations and product offerings. We proudly manufacture or source a wide-range of hard-to-find products from around the globe to make it easy for you to get what you need. Our manufacturing capabilities are complemented with a state-of-theart, world-class warehouse featuring over 100,000 non-threaded fasteners and industrial components. Whether you need one part, or 1,000 s individually bagged and/or labeled with your brand, we offer customized solutions for manufacturing, packaging, and delivery.

```
    NEED A CUSTOM
    PART? CONTACT
    SALES@HUYETT.COM
        OR
    CALL 785-392-3017
```


CENTERLESS GRINDING

Centerless grinding is an abrasive machining process used to remove material from a workpiece efficiently to produce a high volume of parts in a short time. Material, supported by a blade or work rest, is passed between two rotary grinding wheels without the use of a spindle or fixture to secure the workpiece.

LASER CUTTING

Good for short runs where tooling costs can be prohibitive, lasers use a highenergy beam supported by a coaxial supply of cutting gas to melt, vaporize, and/or combust material in a small and concentrated area. Lasered parts are generally flat - such as washers - but parts can also be bent at angles following laser work.

DRILLING

Usually performed during turning or milling operations, multi-tooled turrets can be configured to drill transverse holes, bore internal holes, or ream straight, tapered, or cylindrical holes.

MARKING

Huyett has automated inkjet printing and engraving capabilities that mark (print) your name or part number directly onto your finished parts along with dimensional information using RoHS compliant ink.
Finished parts can also be bagged or boxed with your company's branding in quantities of your choosing.

FORMING

Forming reshapes a workpiece without adding or removing material by rolling, extruding, die forming, forging, or indenting to create roll splines, gears, worms, and threads. Parts may also be broached using a toothed tool to efficiently remove and shape material on a lathe or an arbor press.

MILLING:

Milling is used to shape or modify the tolerances (dimensions) of parts, to install steps or cutouts, to drill and tap holes with exacting precision, or to deburr parts. We offer an extensive range of tooling, tool holding, and insertion options capable of producing just about anything.

MANUFACTURING PROCESSES

We have engineering support staff along with a complete manufacturing facility where we can produce one-offs and specials. The case studies featured in our Engineering Handbook are just a few examples of some of the challenges we have solved with cost-effective solutions.

E-mail sales@huyett.com or call 785-392-3017 to request your copy today and find out what we can do for you.

SAWING:

Huyett utilizes metal-cutting band saws to make precise, uniformly cut key stock and machine keys to tight tolerances. We have the world's largest selection of $1^{\prime}, 3^{\prime}, 6^{\prime}$, and 12^{\prime} lengths of key stock in plain carbon or zinc plated steel, special grades, and nonferrous material up to 3 " square.

STAMPING

Stamping, also referred to as punching, is a process of using a hydraulic press to punch through material and into a die to create a hole in the workpiece. Generally, more than one part can be punched in a single stroke for higher volume applications. A progressive set of dies can also be used to form more complicated designs.

TURNING

Our experienced lathe operators can turn, face, part, or groove complex parts with tight tolerances including the formation of a head (clevis pins) or radial grooves (headless pins).

SURFACE GRINDING

In order to guarantee precise tolerances for your parts, Huyett offers surface grinding - a machining process in which abrasive particles, bonded to a grinding wheel, remove small amounts of material from a workpiece. Parts are held in place magnetically to assist in efficient and streamlined production.

WIRE FORMING:

Many parts such as cotter pins, hitch pin clips, rings, and hooks are manufactured using a process called wire forming. Round square, and shaped wire may be pulled through dies, extruded, bent, or coiled to suit your needs. We offer hundreds of standard wire forms or can customize to your specifications.

KEY STOCK FEATURES

Key stock is a general term for a stock of square or rectangular cold drawn steel that is 1^{1} (305 mm) or greater in length from which machine keys are produced (for lengths less than 12", see Machine Keys on page 48). Hex, round, and step profiles are available to mate with a variety of gears, key ways, sprockets, or other assembly components. Depending on their use, hex and round profiles are sometimes called shafting, just as cut-to-size key stock is commonly referred to as machine keys.

DESIGN CONSIDERATIONS

PRODUCTION QUALITY

KEY STOCK VS. MACHINE KEYS

Key stock, or "bright steel," refers to square and rectangle bars that are drawn to exacting tolerances with sharp corners, perpendicular and parallel sides, and smooth, bright surface finishes.

COLD DRAWN STEEL

SHARP CORNERS

PERPENDICULAR PLANES

STR,AIGHT

BRIGHT

Manufacturing true key stock to tight tolerances is challenging as tolerances for square and rectangle key stock tend to be more precise than for rounds or other forms because of the desired interference fit into the key way.

During production, as material passes through a die, stresses from cold working are introduced that may cause twisting. To produce superior finished results, Huyett has supported the development of cold drawing technologies while working in concert with U.S. and international steel mills.

Though harder to draw and more difficult to install, key stock with sharp corners is desired so that the interference fit of the key into the corners of the key way is optimized to reduce bearing stresses.

Key stock is more costly and difficult to produce, but it is near-finished when drawn compared to conventional steel bars. To produce a bright finish, key stock can be treated to produce a surface finish that is more uniform and precise compared to rounds and other forms.

The terms machine key and key stock are used interchangeably to the point of creating confusion. Technically, the term key stock refers to a stock of material that is one foot or greater in length from which shaft/machine keys are made. Generally, longer lengths are preferred by high quantity users because machine setup time is significantly reduced. Custom

CUT TO FIT

A key may be cut from stock in the field and fit into a key way for aftermarket repairs, or in contract shops that use short production runs.

$1^{\prime}, 3^{\prime}, 6^{\prime}, 305$ MM, AND 1,000 MM ST,AINLESS STEEL AND PLATED KEY STOCK ARE MARKED FOR EASY IDENTIFICATION

KEY STOCK TYPES

UNDERSIZE

The actual size of undersize material will be at least the specified size and may be slightly smaller than the specified size within the acceptable tolerance range.

PAGES 28 \& 36

HEX

Hex key stock is frequently used for tool shafts, tool steel, drill bits, transmission shafts, axles, machine mounts, and gearbox output shafts.

OVERSIZE

The actual size of oversize material will be at least the specified size and may be slightly larger than the specified size within the acceptable tolerance range.

PAGES $28 \$ 36$

MOLTRUP

Moltrup key stock is tightly toleranced oversize material designed to provide a tight, interference fit when a Class 2 fit is desired.

PAGE 34

STEP KEY STOCK

Step key stock is used when worn or damaged key ways have been repaired. Type 1 is designed for use in key ways of repaired gears, sprockets, pulleys, and other hub assembly components. Type 2 is designed for use in repaired shaft key ways.

PAGE 38

COLD DRAWN BRIGHT STEEL

All of Huyett's key stock, shafting, and machine keys are produced using cold drawn bright steel. While higher in cost than traditional cold drawn steel, bright steel is stronger, made to tighter tolerances, and has a finer surface finish.

STRONGER

TIGHTER TOLERANCES

FINER SURFACE FINISH

QUICK REFERANCE CUIDE

Understanding the standards and tolerances (permitted variance) of key stock can be complicated. Key stock is called out by nominal or named size. Among squares and flats, tolerances are referred to as "oversize" (over nominal) or "undersize" (under nominal).

$\left.\begin{array}{|l|l|l|l|l|}\hline & \text { UNDERSIZE } & \text { MOLTRUP } & \text { OVERSIZE } & \begin{array}{l}\text { SPECIALTY } \\ \text { GRADES }\end{array} \\ \hline \text { DESCRIPTION } & \begin{array}{l}\text { Actual size is nominal to } \\ \text { less than nominal. }\end{array} & \begin{array}{l}\text { Actual size is very } \\ \text { slightly over nominal. }\end{array} & \begin{array}{l}\text { Actual size is nominal to } \\ \text { greater than nominal. }\end{array} & \begin{array}{l}\text { Actual size can be } \\ \text { above or below } \\ \text { nominal. }\end{array} \\ \hline \text { COMMON } & \begin{array}{l}\text { Bar Stock; Redi-Key; } \\ \text { Key Bar Stock; Machine } \\ \text { Key Bar Stock; Broad } \\ \text { Key Stock; Negative Key } \\ \text { Stock }\end{array} & \begin{array}{l}\text { Moltrup Steel; True Key } \\ \text { Stock; Bright Steel; Close } \\ \text { Key Stock }\end{array} & \begin{array}{l}\text { Bar Stock; Redi-Key; } \\ \text { Key Bar Stock; Machine } \\ \text { Key Bar Stock; Mak-A- }\end{array} & \text { Bar Stock; Mak-A-Key } \\ \text { KeyTM; Close Key Stock; } \\ \text { Plus Key Stock }\end{array}\right]$.

QUCK REFARANCE GUIDE

STEP KEY
STOCK
T-form, offered in both oversize and undersize tolerances.
Offset Key Stock; Repair Key Stock

Sizing aligns to ANSI B17.1 Class 1 fit, bar stock.

Cold drawn steel. Milled for step and to size; usually plated and marked with size.

1018; 1045; SS304; SS316

Used in repair of damaged key ways in shafts, sprockets, and pulleys.

Step key stock is often erroneously called "offset key stock," which generally refers to "Z" shaped rectangle key stock machined with inverse steps on opposing faces.

ROUND

Round form, with undersize tolerances.

Round Linear Shaft; Round Bar; Round Stock; Rod; Round Axle; Mak-A-Pin

Depends on material grade. ASTM A108; ASTM A681; ASTM A686

Cold drawn steel.

Sometimes turned and polished.

1018; 1045; O-1; W-1;
1095; SS303; SS304;
6061; CDA 360

Versatile material used as shafting, straight pins, rails, or for locating in a wide range of applications and industries.

Round key stock is not drill rod. Drill rod is precision ground to size and surface finished.

Hex form, with undersize tolerances.

Hex Bar Stock; Hexagon Shaft; Hex Shaft Stock; Hex Stock; Hex Rod; Hex Axle

ASTM A108

Cold drawn steel.

1018; 1045; 8630; 4140

Machinery, gears, machine parts, structural components, automobile parts, axles, and drive shafts.

The primary benefit of hex key stock is that there is no key needed and no key way to cut which saves machining time.

SECONDARY PROCESSES

Depending on your application, a secondary process may be necessary.

Heat treating is used to increase strength by raising the temperature of the steel and then cooling it in a controlled manner to change the grain structure of the steel.

TUMBLING
Parts are tumbled to remove burrs prior to shipment or plating. Using friction, the tumbling media is engineered to polish the parts in a controlled manner.

The primary purpose of plating is to protect steel from oxidation and corrosion. Zinc electroplating is one of the most common types of electroplating.

Huyett's Engineering Handbook gives an in-depth explanation of heat treating and other finishing processes.
hUYETT.COM/CRTRLOGS

MATERIAL CODES

Huyett stocks over $1,000,000 \mathrm{lbs}$. of key stock in a wide variety of material. Material/finish combinations may not be available in all sizes. Unless specifically stated, our standard key stock (30 series) is any one of the following grades, subject to market availability: 1018, 1035, 1045, 1095, 1215, or 8630 . For precise grade call 785-392-3017.

ZINC PLATING AND OTHER FINISHES AVAILABLE FOR ALL PARTS SEE PAGE 16

**Size can vary over or under from nominal size.

CUSTOMIZATION

Our state-of-the-art manufacturing facility is capable of producing custom key stock and machine keys. With experience in the automotive, power transmission, and agricultural industries, your special is our specialty.

S.AWING Lengths can be cut up to 144 " with profiles from $1 / 8^{\prime \prime}$ to $6^{\prime \prime}$.

DRILLING
Usually performed with turning or milling operations.

M.ARKING Inkjet printing capabilities to mark information directly on parts. RoHS compliant ink.

EXAMPLES OF WHAT WE CAN DO FOR YOU

H.ALF-ROUND KEY WITH MILLED ENDS

This machine key was saw cut and milled to create its shape.

FLYWHEEL KEY
This flywheel key was saw cut and milled. Then it was heat treated.

H.ALF ROUND KEY WITH HOLE This half round key was saw cut and milled. Then drilled to create the hole.

KEY STOCK STANDARDS

The world of key stock is confusing and non-standardized. For the user, it is important to note:

- Key stock is produced to a very high level of precision.
- Imperial product tends to be close tolerance oversize if called "key stock" and wider tolerance undersize if called "bar stock."
- Metric parts are nearly always close tolerance undersize.
- The tighter the tolerance, the more the product costs to manufacture.

The addition of other features and attributes such as heat treatment can further complicate production of machine keys. Heat treatment can relieve material stresses, and parts can swell and shrink. In close tolerance key stock applications, the addition of heat treatment can result in additional processing costs for stress relieving, grinding, or milling.
Huyett's Sales Team can assist in finding the right balance of specification and cost, so the part yields desirable mechanical benefits at the desired cost.

ANSI B17.1

ANSI B17.1 is the prevailing standard for key stock, but even this standard causes confusion. Within the standard are call outs for "Class 1, a clearance or metal-to-metal side fit using bar stock and key way tolerances... This is known as a relatively free fit and applies only to parallel keys." and "Class 2, a side fit, with possible interference or clearance, obtained by using key stock and key way tolerances... This is a relatively tight fit." While the terms "bar stock," "key stock," and "parallel keys" are used in the standard, the definitions are somewhat ambiguous. The standard defines that there are two classes of stock for parallel keys: Class 1; broad, negative tolerance bar stock, and Class 2; close, plus tolerance key stock. There is a Class 3 noted, but no standards are given and it is suggested to use Class 2 for Class 3 applications.

The variance in standards is to account for the availability of material at economic costs in the marketplace. Some refer to the Class 1 standard as "bar stock" and the Class 2 as "key stock" or "true key stock."
Class 2 aligns to the conventional and historical definition of key stock. This specification denotes oversize, close tolerance standards of $+.001 /-0$ " from nominal on sizes up to $1-1 / 4$ ". The idea is that such tolerance will insure a tight fit with minimum rocking of the key in the key way.
Class 1 widens the permitted standards to the standards of ASTM A108 used by the commercial steel industry. It is thought that this second standard was created to ensure a commercially viable alternative to so-called "true key stock."

ANSI KEY STOCK TOLERANCE SPECIFICATIONS

ANSI B17.1	KEY WIDTH		TOLERANCE
	OVER	$\begin{gathered} \text { TO } \\ (\mathbb{I N C L}) \end{gathered}$	
Class 1: "A clearance or metal-tometal side fit obtained by using bar stock keys and key way tolerances."	-	3/4"	+0/-0.002"
	3/4"	1-1/2"	+0/-0.003"
	1-1/2"	2-1/2"	+0/-0.004"
	2-1/2"	3-1/2"	+0/-0.006"
Class 2: "A side fit, with possible interference or clearance, obtained by using key stock and key way tolerances."	-	1-1/4"	+0.001/-0"
	1-1/4"	$3 "$	+0.002/-0"
	$3 "$	3-1/2"	+0.003/-0"

DIN AND ISO

Historically, metric key stock was specified under DIN 6880 and parallel and tapered keys in DIN 6885, ISO R773, and ISO 2491. These standards have been withdrawn without replacement standards. Because there was no replacement standard issued, these standards are still in use today with DIN 6885 predominating.

Contrarily, ANSI standards contemplate close tolerance oversize material for Class 2, and wider tolerance undersize for Class 1; ISO contemplates only undersize and only one tolerance specification that is roughly equal to Class 2 ANSI, except the tolerances are under the nominal.

BRANDING: AND TRADE NAMES

The traditional branding and trade names for key stock add additional complexity and confusion. Class 2 and ISO key stock are difficult to make, and only specialized mills using specialized equipment can maintain such close tolerances.
Moltrup Steel of Beaver Falls, PA, is one of the more famous brand names for key stock. Moltrup was bought out as the steel industry consolidated in the 1980s. The plant closed and is no longer in operation. Moltrup is still listed on many prints and when listed, the general inference is that the user wants ANSI B17.1 Class 2 fit.

Mak-A-Key ${ }^{\text {TM }}$, originally trademarked by Devan-Johnson Co., was the first branded key stock intended as an aftermarket product. Technically, a machine key is a cut-to-length part for an application, while key stock is a "stock" of material 12" or longer that is cut in the field. Mak-A-Key's moniker is "cut, file, fit."

Mak-A-Key was historically advertised as "key stock." The material was actually oversize drawn bar stock. In this regard, Mak-A-Key is unique. Oversize bar stock is quite rare and rarely specified in applications, however Mak-A-Key and Moltrup are still commonly referenced by design engineers.

COLD FINISHED STIEAL - IMPERIAL

DESCRIPTION

A stock of material that is one foot or greater in length, and from which machine keys are made. It is available in stocked standard sizes or can be custom made to your specifications.

HOW TO IDENTIFY

1. Measure height (A).
2. Measure width (B).
3. Measure length (C).
4. Build the part number from the chart on the next page.

HEIGHT (A) AND WIDTH (B) TOLERANCES					
MATERIAL		SQUARE		RECTANGLE	
(Prefix) (Material/rinish) (Size Range) (Tolerance) (Size Range) (Tolerance)					
30	Cold Finished Steel, Plain*	$\begin{aligned} & .0625-.7500 " \\ & >.7500-1.5000 " \\ & >1.5000-2.5000 \end{aligned}$		$\begin{aligned} & .0938-.7500 " 1 \\ & \gg .7500-1.5000 " 1 \\ & >1.5000-3.0000 " \end{aligned}$	
31	Cold Finished Steel, Zinc Clear Trivalent	>2.5000" +	+0/-.0060"	>3.0000" +	+0/-.0060"
45	Cold Finished Steel, Plain* (1045)	$\begin{aligned} & .0625-.7500 " \\ & >.7500-1.5000 " \\ & >1.5000-2.5000 " \end{aligned}$		$\begin{aligned} & .2500-.7500 " 1 \\ & >.7500-1.5000 " \\ & >1.5000-3.0000 \end{aligned}$	$\begin{aligned} & +0 /-.0040 " \\ & +0 /-.0050 " 1 \\ & +0 /-.0060 " \end{aligned}$
46	Cold Finished Steel, Zinc Clear Trivalent (1045)				
65	Cold Finished Alloy Steel, Plain* (4140)	$\begin{aligned} & .0625-.7500 " \\ & >.7500-1.5000 " \\ & >1.5000-3.0000 " \end{aligned}$	$\begin{aligned} & +0 /-.005 " \\ & +00-.006 " \\ & +01-.007 \end{aligned}$	$\begin{aligned} & .0625-.7500 " 1 \\ & >.7500-1.5000 " \\ & >1.5000-3.0000 \end{aligned}$	$\begin{aligned} & +0 /-.005 " \\ & +00-.006 \\ & +01-.007 \end{aligned}$
66	Cold Finished Alloy Steel, Zinc Clear (4140)				
Oversize					
35	Cold Finished Steel, Plain*	$\begin{aligned} & .0625-.7500 " \\ & >.7500-1.5000 " \\ & >1.5000-2.5000 " \end{aligned}$	$\begin{aligned} & +.0020 /-0 " 0 " \\ & +.0030 /-0 " \\ & +.0040 /-0 " \end{aligned}$	$\begin{aligned} & .1875-.7500 " 1 \\ & >.7500-1.5000 " \\ & >1.5000-3.0000 \end{aligned}$	$\begin{aligned} & +.0030 /-0 " 0 \\ & +.0040 /-0 " \\ & +.0050 /-0 " \end{aligned}$
36	Cold Finished Steel, Zinc Clear				

LENG:TH (C) TOLERANCES	
LENG:TH	TOLERANCE
$12-36 "$	$+0 /-.125 "$
$>36-<144 "$	$+0 /-.250 "$
$144 "$	$\pm 6 "$

Nonstandard lengths up to $144^{\prime \prime}$ are available. Lengths over 3' may be subject to a packaging charge.

1', 3', AND 6' STAINLESS STEEL AND PLATED KEY STOCK
ARE MARKKED FOR EASY IDENTIFIC,ATION

M=TRC

DESCRIPTION

A stock of material that is 305 mm or greater in length from which machine keys are made. It is available in stocked standard sizes or can be custom made to your specifications.

HOW TO IDENTIFY

1. Measure width (A).
2. Measure height (B).
3. Measure length (C).
4. Build the part number from the chart on the next page.

PREFIX	MATERIAL/FINISH
UNDERSIZE	
30	Cold Finished Steel, Plain*
31	Cold FInished Steel, Zinc Yellow Trivalent
70	300 Series (A1-A5) Stainless Steel, Plain
80	316 (A4) Stainless Steel, Plain
OVERSIZE	
35	Cold Finished Steel, Plain*
36	Cold FInished Steel, Zinc Clear Trivalent
75	300 Series (A1-A5) Stainless Steel, Plain
Material/finish combinations may not be available in all sizes. Unless specifically stated, our standard cold finished steel key stock (30 series) is any one of the following grades, subject to market availability: $1018,1035,1045,1095,1215$, or 8630 . Our standard stainless steel key stock (70 series) is any 300 series (A1-A5) stainless steel subject to market availability. Call for precise grade.	

$4 \mathrm{~mm} \times 4 \mathrm{~mm}$ (-SIZE)

$3 \theta 5$ MM AND 1, $\theta \theta \theta$ MM STAINLESS STEEL AND PL,ATED KEY STOCK ARE M,ARKED FOR EASY IDENTIFIC,ATION

LENCTH (C) TOLERANCES	
LENCTH	TOLERANCE
$305-1,000 \mathrm{~mm}$	$+0 /-3.175 \mathrm{~mm}$
$>1,000-3,000 \mathrm{~mm}$	$+0 /-6.35 \mathrm{~mm}$
$>3,000-4,000 \mathrm{~mm}$	$+0 /-152.4 \mathrm{~mm}$

Nonstandard lengths up to $4,000 \mathrm{~mm}$ are available. Lengths over 1 m may be subject to a packaging charge.

HUYETT.COM • 785-392-3017

DIN TOMERANCES

DIN 6880 key stock is the standard for metric key stock worldwide. DIN 6880 is drawn to close undersize tolerance to yield a tight fit in the mating key way. As the material is drawn, the steel may be bead blasted to remove surface imperfections and increase brightness.

DIN 6880 is made to a C45 designation (AISI 1045) for carbon steel and A4 (AISI 316) for stainless steel. In some instances, we may substitute DIN 174 or DIN 178 for stainless steel only.

DIN 688θ STANDARD TOLERANCING FOR RECTANG:E (FLAT) METRIC STEELS

(Width \times Height)	(Width Tolerance)	(Height Tolerance)
5×3	+0/-0.030 mm	+0/-0.060 mm
6×4	$+0 /-0.030 \mathrm{~mm}$	-0.075
7×4	+0/-0.036 mm	+0/-0.030 mm
8×5		
8×7		
10×6		
10×8	$+0 /-0.036 \mathrm{~mm}$	$+0 /-0.036 \mathrm{~mm}$
12×6	$+0 /-0.043 \mathrm{~mm}$	$+0 /-0.075 \mathrm{~mm}$
12×8	+0/-0.043 mm	+0/-0.036 mm
12×10		
14×6	+0/-0.043 mm	+0/-0.075 mm
14×9	+0/-0.043 mm	+0/-0.090 mm
16×7		
16×10		
18×7		
18×11		
20×8	+0/-0.052 mm	$+0 /-0.090 \mathrm{~mm}$
20×12		$+0 /-0.110 \mathrm{~mm}$
22×9		$+0 /-0.090 \mathrm{~mm}$
22×14		$+0 /-0.110 \mathrm{~mm}$
25×9		$+0 /-0.090 \mathrm{~mm}$
25×14		$+0 /-0.110 \mathrm{~mm}$
25×22		$+0 /-0.130 \mathrm{~mm}$
28×10		$+0 /-0.090 \mathrm{~mm}$
28×16		$+0 /-0.110 \mathrm{~mm}$
28×25		$+0 /-0.130 \mathrm{~mm}$
32×18	+0/-0.062 mm	+0/-0.110 mm
32×11		
32×30		+0/-0.130 mm
36×20		
36×12		$+0 /-0.110 \mathrm{~mm}$
36×34		$+0 /-0.160 \mathrm{~mm}$
40×22		$+0 /-0.130 \mathrm{~mm}$
40×38		$+0 /-0.160 \mathrm{~mm}$
45×25		$+0 /-0.130 \mathrm{~mm}$
45×43		$+0 /-0.160 \mathrm{~mm}$
50×28		+0/-0.130 mm

DIN 174 RECTANGLE (FLAT) MATERIAL			
(ISO TOLERANCE HII)			

DIN 178 SQUARE MATERIAL (ISO TOLERANCE HII)			
(Height \& Width)	(Tolerance)	(Height \& Width)	(Tolerance)
0-3 mm	+0/-0.060 mm	$10-18 \mathrm{~mm}$	+0/-0.110 mm
$3-6 \mathrm{~mm}$	$+0 / 0.075 \mathrm{~mm}$	$18-30 \mathrm{~mm}$	$+0 /-0.130 \mathrm{~mm}$
6-10 mm	+0/-0.090 mm	30-50 mm	+0/-0.160 mm

DECARBURIZATION

Decarburization, also known as decarbonization or decarb, is the reduction of carbon content in steel. This can be an intentional process or a side effect of a process. It can happen in three distinct events: a reaction at the surface, diffusion of carbon atoms, or as a result of carbides dissolving in the steel.

CAUSE AND EFFECT

The amount of carbon within a metal determines its hardness. Decarburization occurs when the steel is heated above $700^{\circ} \mathrm{C}$ $\left(1,292^{\circ} \mathrm{F}\right)$ or as a side effect from cold rolling. Reducing carbon in the surface of the steel can result in softer readings when measuring hardness.
Decarburization is a serious problem because surface properties can be significantly degraded compared to interior properties. It can bring down the strength of steel and increase shear strain below the surface. Fatigue resistance can be decreased and crack growth and wear rate increased.
Decarburization can be remedied on through hardened parts by grinding the surface, while case hardened parts can be carburized in furnaces with inert gas atmospheres.
ASTM A108 Level 1 allows a $.010^{\prime \prime}$ deep decarburization layer on cold finished steel bar sides up to $5 / 8$ ". Sides over $5 / 8^{\prime \prime}$ are allowed a maximum of 1.6%. Decarburization will be more likely to occur in medium and high carbon grades. The decarb must be removed prior to testing to accurately measure hardness.

RESULT OF HEATING

RESULT OF ROLLING

MIL-SPEC - IMPERIAL

DESCRIPTION

MIL-SPEC compliant key stock is precision manufactured to the most exacting specifications. The raw material is procured from DFARS qualifying countries in accordance with Article 252.225-7009. Available in 1 ft and 3 ft lengths, MIL-SPEC compliant key stock can be cut to match lengths listed in most standards including NASM20065, NASM20066, and NASM20068.

HOW TO IDENTIFY

1. Measure height (A).
2. Measure width (B).
3. Measure length (C).
4. Build the part number from the chart below.

PREFIX
OVERSIZE

MS34	$=$	Grade C, Carbon Steel, Plain*
MS60	$=$	Grade B, Alloy Steel, Plain
MS85	$=\quad$ Grade A, Stainless Steel, Plain	

Material/finish combinations may not be available in all sizes.

Additional sizes available as special order, visit huyett.com for more details.

MOLTRUP

ASME BI7.I CLASS 2

DESCRIPTION

A stock of material that is one foot or greater in length from which machine keys are made. Moltrup key stock is tightly toleranced material designed to provide a tight, interference fit when a Class 2 fit is desired. It is available in stocked standard sizes or can be custom made to your specifications.

HOW TO IDENTIFY

1. Measure height (A).
2. Measure width (B).
3. Measure length (C).
4. Build the part number from the chart on the next page.

PREFIX MATERIAL/FINISH
6θ = MOLTRUP QUALITY STEEL, PLAIN* ($1 \theta 45$ OR 863 $)$
Material/finish combinations may not be available in all sizes.

	MATERIAL	SQUAR	RE	RECTAN	GLE
(Prefix)	(Material/Finish)	(Size Range)	(Tolerance)	(Size Range)	(Tolerance)
60	Moltrup Quality Steel, Plain* (1045 or 8630)	$\begin{aligned} & .0625-1.2500 " \\ & >1.2500-3.0000 " \end{aligned}$	$\begin{aligned} & +.0010 /-0 " 1 \\ & +.0020 /-0 " \end{aligned}$	$\begin{aligned} & \text { (Width) } \\ & .0625-1.2500 " \\ & >1.2500-3.0000 " \\ & \text { (Height) } \\ & .0625-7.0000 " \end{aligned}$	$\begin{aligned} & +.0010 /-0 " 0 " \\ & +.0020 /-0 " \\ & \pm .0050 " \end{aligned}$

LENG.TH (C) TOLERANCES	
LENGTH	TOLERANCE
$12-36 "$	$+0 /-.125^{\prime \prime}$
$>36-<144^{\prime \prime}$	$+0 /-.250^{\prime \prime}$
$144^{\prime \prime}$	$\pm 6^{\prime \prime}$

Nonstandard lengths up to 144" are available. Lengths over 3' may be subject to a packaging charge.

MOLTRUP STEAL COMPANY

MOLTRUP OR MOLTRIP?

While the correct spelling is "Moltrup," at some point early in its history someone spelled it with an "i." Both versions are still used today. Although the name is commonly used to reference a particular kind of steel, it is not an actual grade.

Moltrup Steel is considered one of the most important and pioneering steel companies in the niche business of bright steel for keys and key stock. Founded in Beaver Falls, PA, in 1914 by Stephen and J. T. Moltrup, the company was the inventor of what was known as the "Moltrup Die," which is a sectional die that allows adjustments to be made in the die without removal from the die bench. Moltrup was an early adopter of automation and by 1924, they had developed a drawbench capable of drawing four bars at a time, known as "the Duplex." Inventor J. T. Moltrup was said to have developed the concept after touring a bread factory in Battle Creek, MI.

Precision drawn bright steel served many uses. Moltrup steel was used to produce crankshafts for Liberty airplanes in World War I; and for engraving and foundry plates, including engraving plates for the Federal Bureau of Printing and Engraving. These plates were used to produce paper money and food stamps.

During the mid-twentieth century, Moltrup steel was often used in hand tools, such as the shafts for screwdrivers, and according to a 1969 company biography, "wherever close fit or fine finishes are required, including the auto, appliance, business machine, computer, and machine tool industries."

STAINLESS \& NONFERROUS - IMPERIAL

DESCRIPTION

A stock of material that is one foot or greater in length from which machine keys are made. It is available in stocked standard sizes or can be custom made to your specifications.

HOW TO IDENTIFY

1. Measure height (A).
2. Measure width (B).
3. Measure length (C).
4. Build the part number from the chart on the next page.

PREFIX MATERIAL/FINISH

STAINLESS STEEL

70	$=$	300 Series (A1-A5) Stainless Steel, Plain	
75	$=$	300 Series (A1-A5) Stainless Steel, Plain	
80	$=$	316 (A4) Stainless Steel, Plain	
85	$=$	416 Stainless Steel, Plain	
NONFERROUS			
04	$=$		
06	$=$	Aluminum, Plain	
10	$=$	Nicks, Plain	
12	$=$	Nylon, Plain	

Material/finish combinations may not be available in all sizes. Our standard stainless steel key stock (70 series) is any 300 series (A1-A5) stainless steel subject to market availability. Call for precise grade.

HEIGHT (A) AND WIDTH (B) TOLER,ANCES					
	MATERIAL	SQUARE		RECTANGLE	
(Prefix) (Material/Finish)		(Size Range)	(Tolerance)	(Size Range)	(Tolerance)
Stainless Steel					
70	300 Series Stainless Steel, Plain**	$\begin{aligned} & .0937-.3120 " \\ & >.3120-.5000 " \\ & >.5000-1.0000 " \\ & >1.0000-2.0000 " \end{aligned}$	$\begin{aligned} & +0 /-.0020^{" \prime} \\ & +0 /-.0030^{" \prime} \\ & +0 /-.0040^{" \prime} \\ & +0 /-.0060^{" \prime} \end{aligned}$	$\begin{aligned} & \text { (Width Size) } \\ & .0625-.3750 " \\ & >.3750-1.0000 " \\ & >1.0010-2.0000 " \\ & \text { (Height Size) } \\ & .03500-1.0000 " \\ & >1.0000-2.0000 " \end{aligned}$	$\begin{aligned} & \pm .0050 " \\ & \pm .0040 " \\ & \pm .0060^{\prime \prime} \\ & \\ & \pm .0020 " \\ & \pm .0030^{\prime \prime} \end{aligned}$
75	300 Series Stainless Steel, Plain, Oversize	$\begin{aligned} & .0625-.5625 " \\ & >.5625-1.0000 " \\ & >1.0000-2.0000 " \end{aligned}$	$\begin{aligned} & +.0030 /-0 " \\ & +.0050 /-0 " \\ & +.0060 /-0 " \end{aligned}$	$\begin{aligned} & .0625-.5625 " \\ & >.5625-1.0000 " \\ & >1.0000-2.0000 " \end{aligned}$	$\begin{aligned} & +.0030 /-0 " \\ & +.0050 /-0 " \\ & +.0060 /-0 " \end{aligned}$
80	316 Stainless Steel, Plain, Undersize	$\begin{aligned} & .0937-.3120^{\prime \prime} \\ & >.3120-.5000^{\prime \prime} \\ & >.5000-1.0000 " \end{aligned}$	$\begin{aligned} & +0 /-.0020 " \\ & +0 /-.0030 " \\ & +0 /-.0040 " \end{aligned}$	(Width Size) $\begin{aligned} & .0625-.3750 " \\ & >.3750-1.0000 " \end{aligned}$	$\begin{aligned} & \pm .0050 " \\ & \pm .0040 " \end{aligned}$
85	416 Stainless Steel, Plain, Undersize			$\begin{aligned} & \text { (Height Size) } \\ & .03500-1.0000 " \\ & >1.0000-2.0000 \end{aligned}$	$\begin{aligned} & \pm .0020 " \\ & \pm .0030 " \end{aligned}$
Nonferrous					
04	Aluminum, Plain**	$\begin{aligned} & .1250-.3750 " \\ & \gg 3750-.6250 " \\ & >.6250-.8750 " \\ & >.8750-1.2500 " \\ & >1.2500-1.7500 " \\ & >1.7500-2.5000 " \end{aligned}$	$\begin{aligned} & \pm .0080 " \\ & \pm .0090^{\prime \prime} \\ & \pm .0100 " \\ & \pm .0120 " \\ & \pm .0140^{\prime \prime} \\ & \pm .0240^{\prime \prime} \end{aligned}$	$\begin{aligned} & .1250-.3750 " \\ & >.3750-.6250 " \\ & >.6250-.8750 " \\ & >.8750-1.2500 " \\ & >1.2500-1.7500 " \\ & >1.7500-2.5000 " \end{aligned}$	$\begin{aligned} & \pm .0080 " \\ & \pm .0090^{\prime \prime} \\ & \pm .0100^{\prime \prime} \\ & \pm .0120^{\prime \prime} \\ & \pm .0140^{\prime \prime} \\ & \pm .0240^{\prime \prime} \end{aligned}$
06	Brass, Plain**	$\begin{aligned} & .1250 " \\ & >.1875-.5000 " \\ & >.5000-1.0000 " \\ & >1.0000-2.0000 " \end{aligned}$	$\begin{aligned} & \pm .0020 " \\ & \pm .0030 " \\ & \pm .0040 " \\ & \pm .0050 " \end{aligned}$	$\begin{aligned} & .1250 " \\ & >.1250-.5000 " \\ & >.5000-1.0000 " \\ & >1.0000-2.0000 " \end{aligned}$	$\begin{aligned} & \pm .0020 " \\ & \pm .0030 " \\ & \pm .0040 " \\ & \pm .0050^{\prime \prime} \end{aligned}$
10	Nickel Copper Alloy / Monel 400^{\circledR}	. 0937 - .7500"	$\pm .0020{ }^{\prime \prime}$. $0937-.7500$ "	$\pm .0020{ }^{\prime \prime}$
12	Nylon, Plain**	All Sizes	$\pm .0050{ }^{\prime \prime}$	All Sizes	$\pm .0050{ }^{\prime \prime}$

[^0]

KEY STOCK MAY BE FILED OR SURFACE GROUND TO FIT

STAMNLESS \& NONFERROUS - IMPERIAL

HOW TO BUILD A PART NUMBER

 YOUR MATERIAL,

CODE	MATERIAL
04	Aluminum, Plain **
06	Brass, Plain**
10	Nickel Copper Alloy / Monel 400^{\oplus}, Plain, Undersize
12	Nylon, Plain**
70	300 Series Stainless Steel, Plain**
75	300 Series Stainless Steel, Plain, Oversize
80	316 Stainless Steel, Plain, Undersize
85	416 Stainless Steel, Plain, Undersize

**Depending on profile, size can vary over or under from nominal size.

```
    DON'T SEE WHAT
    YOU'RE LOOKING
    FOR? CONTACT
SALES@HUYETT.COM
    OR
CALL 785-392-3017
```


1/16" to 2-1/2"

CHOOSE YOUR HEIGHT,

CODE	HEIGHT	CODE	WIDTH
0062	.0625" (1/16)	0062	.0625" (1/16)
0093	.0938" (3/32)	0093	.0938" (3/32)
0125	.1250" (1/8)	0125	.1250" (1/8)
0156	.1563" (5/32)	0156	.1563" (5/32)
0187	.1875" (3/16)	0187	.1875" (3/16)
0218	.2188" (7/32)	0218	.2188" (7/32)
0250	.2500" (1/4)	0250	.2500" (1/4)
0281	.2813" (9/32)	0281	.2813" (9/32)
0312	.3125" (5/16)	0312	.3125" (5/16)
0343	.3438" (11/32)	0343	. 3438 " (11/32)
0375	.3750" (3/8)	0375	.3750" (3/8)
0406	.4063" (13/32)	0406	. 4063 " (13/32)
0437	.4375" (7/16)	0437	.4375" (7/16)
0468	.4688" (15/32)	0468	.4688" (15/32)
0500	.5000" (1/2)	0500	.5000" (1/2)
0562	.5625" (9/16)	0562	.5625" (9/16)
0625	.6250" (5/8)	0625	.6250" (5/8)
0687	.6875" (11/16)	0687	.6875" (11/16)
0750	.7500" (3/4)	0750	.7500" (3/4)
0812	.8125" (13/16)	0812	.8125" (13/16)
0875	.8750" (7/8)	0875	.8750" (7/8)
0937	.9375" (15/16)	0937	.9375" (15/16)
1000	1.0000 " (1)	1000	1.0000 " (1)
1500	1.5000" (1-1/2)	1500	1.5000" (1-1/2)
2000	2.0000 " (2)	2000	2.0000 " (2)
2500	2.5000" (2-1/2)	2500	2.5000" (2-1/2)

Additional sizes up to 7 " available as special order, visit huyett.com for more details.

GENERALLY, THE KEY, SH,AFT, AND HUB FIT SNUGGLY TOGETHER

A KEY W.AY TH.AT IS TOO TALL OR TOO SHORT RESULTS IN IMPROPER SEATING beTWEEN THE HUB AND SH,AFT

12 " to $144 "$
-12
CHOOSE YOUR
LENGTH.

CODE	LENGTH
-12	$12^{\prime \prime}\left(1^{\prime}\right)$
-24	$24^{\prime \prime}\left(2^{\prime}\right)$
-36	$36^{\prime \prime}\left(3^{\prime}\right)$
-48	$48^{\prime \prime}\left(4^{\prime}\right)$
-72	$72^{\prime \prime}\left(6^{\prime}\right)$
-120	$120^{\prime \prime}\left(10^{\prime}\right)$
-144	$144^{\prime \prime}\left(12^{\prime}\right)$

Nonstandard lengths up to 144 " are available. Lengths over 3' may be subject to a packaging charge.

Order Tracking Info
Expected Ship Date

Your Favorites

huyett.com/MyAccount/OrderHistory

* Some exclusions apply

STEP KEY

DESCRIPTION

Step key stock is used when worn or damaged key ways have been repaired. Type 1 is designed for use in key ways of repaired gears, sprockets, pulleys, and other hub assembly components. Type 2 is designed for use in repaired shaft key ways.

Material/finish combinations may not be available in all sizes.

HOW TO IDENTIFY

1. Measure width (A).
2. Measure width 2 (C).
3. Measure height (B).
4. Measure height 2 (D).
5. Find the part number in the chart on the next page.

TYPE 2

STEP KEY TOLERANCES

Tolerances for step key stock are dependent upon the material from which it is made. For material and tolerance information, contact sales@huyett.com or 785-392-3017.

HOW TO USE STEP KEYS

TYPE 1

SIDEW,ALLS OF THE HUB ASSEMBLY KEY W,AY ARE SEVERELY DAM,AGED

THE KEY WAY IS BROACHED TO A LARGER SIZE TO REPAIR THE DAM,AGED HUB

A TYPE I STEP KEY IS USED TO FILL THE MISMATCHED KEY WAYS

TYPE 2

TO ACCOUNT FOR THE CURVATURE OF THE SHAFT A TYPE 2 STEP KEY IS USED TO FILL THE MISMATCHED KEY WAYS

| | $(A \times C)$ | (A) | (C) | (B) | (D) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ITEM | SIZE | WIDTH | WIDTH 2 | HEIGHT | HEIGHT 2 |

Type 1						
PREFIX01-1	$3 / 16^{\prime \prime} \times 1 / 8$ "	.1875" (3/16)	.1250" (1/8)	.0938" (3/32)	.0625" (1/16)	12.0000" (12)
PREFIX07-1	$3 / 8^{\prime \prime} \times 5 / 16^{\prime \prime}$. 3750 " (3/8)	.3125" (5/16)	.1875" (3/16)	.1250" (1/8)	12.0000" (12)
PREFIX08-1	$3 / 8^{\prime \prime} \times 5 / 16^{\prime \prime}$.3750" (3/8)	.3125" (5/16)	.1875" (3/16)	.1563" (5/32)	12.0000 " (12)
PREFIX12-1	$1 / 2^{\prime \prime} \times 7 / 16^{\prime \prime}$.5000" (1/2)	.4375" (7/16)	.2500" (1/4)	.1563" (5/32)	12.0000 " (12)
PREFIX17-1	$5 / 8{ }^{\prime \prime} \times 3 / 8^{\prime \prime}$.6250" (5/8)	.3750" (3/8)	.3125" (5/16)	.1875" (3/16)	12.0000 " (12)
PREFIX19-1	$3 / 4 " \times 1 / 2^{\prime \prime}$.7500" (3/4)	.5000" (1/2)	.3750" (3/8)	.2500" (1/4)	12.0000 " (12)
PREFIX20-1	$3 / 4 " \times 5 / 8^{\prime \prime}$.7500" (3/4)	.6250" (5/8)	.3750" (3/8)	.1875" (3/16)	12.0000 " (12)
PREFIX21-1	$3 / 4 " \times 5 / 8^{\prime \prime}$.7500" (3/4)	.6250" (5/8)	. 3750 " (3/8)	. 3125 " (5/16)	12.0000 " (12)
PREFIX22-1	$3 / 4 " \times 11 / 16^{\prime \prime}$.7500" (3/4)	.6875" (11/16)	. 3750 " (3/8)	.2500" (1/4)	12.0000 " (12)
PREFIX27-1	$1{ }^{\prime \prime} \times 7 / 8$ "	1.0000 " (1)	.8750" (7/8)	.5000" (1/2)	.4375" (7/16)	12.0000 " (12)

Type 2						
PREFIX02-2	$3 / 16^{\prime \prime} \times 1 / 4$ "	.1875" (3/16)	.2500" (1/4)	.0938" (3/32)	.0938" (3/32)	12.0000" (12)
PREFIX03-2	$3 / 16^{\prime \prime} \times 1 / 4$ "	.1875" (3/16)	.2500" (1/4)	.0938" (3/32)	.1250" (1/8)	$12.0000^{\prime \prime}$ (12)
PREFIX04-2	$1 / 4{ }^{\prime \prime} \times 5 / 16^{\prime \prime}$.2500" (1/4)	.3125" (5/16)	.1250" (1/8)	.1250" (1/8)	$12.0000^{\prime \prime}$ (12)
PREFIX05-2	$1 / 4 " \times 3 / 8^{\prime \prime}$.2500" (1/4)	.3750" (3/8)	.1250" (1/8)	.1250" (1/8)	$12.0000^{\prime \prime}$ (12)
PREFIX06-2	$1 / 4 " \times 3 / 8 "$.2500" (1/4)	.3750" (3/8)	.1250" (1/8)	.1875" (3/16)	12.0000" (12)
PREFIX09-2	$3 / 8{ }^{\prime \prime} \times 7 / 16^{\prime \prime}$.3750" (3/8)	.4375" (7/16)	.1875" (3/16)	.1563" (5/32)	$12.0000^{\prime \prime}$ (12)
PREFIX10-2	$3 / 8{ }^{\prime \prime} \times 1 / 2^{\prime \prime}$.3750" (3/8)	.5000" (1/2)	.1875" (3/16)	.1875" (3/16)	12.0000" (12)
PREFIX11-2	$3 / 8^{\prime \prime} \times 1 / 2^{\prime \prime}$. 3750 " (3/8)	.5000" (1/2)	.1875" (3/16)	.2500" (1/4)	$12.0000^{\prime \prime}$ (12)
PREFIX13-2	$1 / 2^{\prime \prime} \times 9 / 16^{\prime \prime}$.5000" (1/2)	.5625" (9/16)	.2500" (1/4)	.1875" (3/16)	12.0000" (12)
PREFIX14-2	$1 / 2^{\prime \prime} \times 5 / 8^{\prime \prime}$.5000" (1/2)	.6250" (5/8)	.2500" (1/4)	.1875" (3/16)	12.0000 " (12)
PREFIX $15-2$	$1 / 2^{\prime \prime} \times 5 / 8^{\prime \prime}$.5000" (1/2)	.6250" (5/8)	.2500" (1/4)	.3125" (5/16)	12.0000" (12)
PREFIX16-2	$1 / 2^{\prime \prime} \times 11 / 16^{\prime \prime}$.5000" (1/2)	.6875" (11/16)	.2500" (1/4)	.2500" (1/4)	12.0000" (12)
PREFIX18-2	$5 / 8{ }^{\prime \prime} \times 11 / 16^{\prime \prime}$.6250" (5/8)	.6875" (11/16)	. 3125 " (5/16)	.2500" (1/4)	12.0000" (12)
PREFIX23-2	$3 / 4 " \times 13 / 16^{\prime \prime}$.7500" (3/4)	.8125" (13/16)	. 3750 " (3/8)	.2813" (9/32)	$12.0000^{\prime \prime}$ (12)
PREFIX24-2	$3 / 4 " \times 7 / 8^{\prime \prime}$.7500" (3/4)	.8750" (7/8)	. 3750 " (3/8)	.4375" (7/16)	12.0000" (12)
PREFIX $25-2$	$3 / 4 " \times 15 / 16^{\prime \prime}$.7500" (3/4)	.9375" (15/16)	. 3750 " (3/8)	. $3125^{\prime \prime}(5 / 16)$	12.0000" (12)
PREFIX26-2	$3 / 4 " \times 1$ "	.7500" (3/4)	1.0000 " (1)	.3750" (3/8)	.5000" (1/2)	12.0000 " (12)

人 TO ORDER, REPLACE PREFIX
WITH YOUR CHOICE:
SK • SKO • SKS

OFFSET KEY STOCK
Unlike step key stock, offset key stock is machined with inverse steps on opposing faces. Huyett can make custom offset key stock, but does not offer it as an off-the-shelf part. Contact engineeringsupport@huyett.com.

HOW TO READ A PART NUMBER
Step key stock comes in standard height \times width combinations. Find the part number in the charts.

ROUND - IMPERIAL

DESCRIPTION

A stock of material that is one foot or greater in length from which machine keys are made. We manufacture key stock to suit every application need you have, in nearly every size, grade, and tolerance imaginable. Available in stocked standard sizes or custom made to your specifications.

HOW TO IDENTIFY

1. Measure diameter (A).
2. Measure length (C).
3. Build the part number from the chart on the next page.

PREFIX MATERIAL/FINISH

RK	$=$	COLD FINISHED STEEL, PLAIN*	RKA	=	ALUMINUM, PLAIN
RKZ	=	COLD FINISHED STEEL,	RKB	=	BRASS, PLAIN
		ZINC CLEAR TRIVALENT	RKS	$=$	STAINLESS STEEL, PLAIN
RK45	$=$	COLD FINISHED STEEL, PLAIN* (1ө45)	RKS36	=	316 STAINLESS STEEL, PLAIN
RK65	=	COLD FINISHED ALLOY STEEL,	Material/fin	co	tions may not be available in all sizes.

DIAMETER (A) TOLERANCES			
MATERIAL		DIAMETER	
(Prefix)	(Material/Finish)	(Size Range)	(Tolerance)
RK	Cold Finished Steel, Plain*	. 0625 -1.5000"	+0/-.0020"
RKZ	Cold Finish Steel, Zinc Clear Trivalent	>1.5000-2.5000"	+0/-.0030"
RK45	Cold Finished Steel, Plain* (1045)	$\begin{aligned} & .7500 " \\ & >.7500-1.0000 " \end{aligned}$	$\begin{aligned} & +0 /-.0030 " \\ & +0 /-.0020 " \end{aligned}$
RK65	Cold Finished Alloy Steel, Plain* (4140)	$\begin{aligned} & .3125^{\prime \prime} \\ & >.3125^{\prime \prime}-1.0000 " \end{aligned}$	$\begin{aligned} & +0 /-.0050 " \\ & +0 /-.0060 " \end{aligned}$
RKA	Aluminum, Plain	$\begin{aligned} & .1250 " \\ & \gg .1250-.1875^{\prime \prime} \\ & >.1875-.4375^{\prime \prime} \\ & >.4375-.6250^{\prime \prime} \\ & >.6250-.8750^{\prime \prime} \\ & >.8750-1.2500^{\prime \prime} \\ & >1.2500-1.5000^{\prime \prime} \\ & >1.5000-2.0000^{\prime \prime} \end{aligned}$	$\begin{aligned} & \pm .0060 " \\ & \pm .0070^{" \prime} \\ & \pm .0080^{" \prime} \\ & \pm .0090^{" \prime} \\ & \pm .0100^{\prime \prime} \\ & \pm .0120^{\prime \prime} \\ & \pm .0150^{\prime \prime} \\ & \pm .0200^{\prime \prime} \end{aligned}$
RKB	Brass, Plain	$\begin{aligned} & .1250-.5000 " \\ & >.5000-1.1250 " \\ & >1.1250-2.2500 " \end{aligned}$	$\pm .0020^{\prime \prime}$ $\pm .0030 "$ $\pm .0040 "$
RKS	Stainless Steel, Plain	$\begin{aligned} & .0625-.3125^{\prime \prime} \\ & >.3125-.4375^{\prime \prime} \\ & >.4375-.8750^{\prime \prime} \\ & >.8750-1.4375^{\prime \prime} \\ & >1.4375-2.0000^{\prime \prime} \end{aligned}$	$\begin{aligned} & \pm .0010^{\prime \prime} \\ & \pm .0015 " \\ & \pm .0020 " \\ & \pm .0250^{" \prime} \\ & \pm .0030^{\prime \prime} \end{aligned}$
RKS36	316 Stainless Steel, Plain	$\begin{aligned} & .2500 " \\ & >.2500-.3750 " \\ & >.3750-.5000 " \end{aligned}$	$\pm .0010 "$ $\pm .0015^{\prime \prime}$ $\pm .0020^{\prime \prime}$

LENGTH (C) TOLERANCES	
LENGTH	TOLERANCE
$12-36 "$	$+0 /-.125 "$
$>36-<144 "$	$+0 /-.250 "$
$144 "$	$\pm 6 "$

Nonstandard lengths up to $144^{\prime \prime}$ are available. Lengths over 3' may be subject to a packaging charge.

ZINC PLATING AND OTHER FINISHES AVAILABLE FOR ALL PARTS SEE PAGE 16

HOW TO BUILD A PART NUMBER

1/16" to 2"

CHOOSE YOUR DIAMETER,

CODE	DIAMETER
0062	.0625" (1/16)
0093	.0938" (3/32)
0125	.1250" (1/8)
0156	.1562" (5/32)
0187	.1875" (3/16)
0250	.2500" (1/4)
0312	.3125" (5/16)
0375	.3750" (3/8)
0437	.4375" (7/16)
0500	.5000" (1/2)
0562	.5625" (9/16)
0625	.6250" (5/8)
0687	.6875" (11/16)
0750	.7500" (3/4)
0812	.8125" (13/16)
0875	.8750" (7/8)
0937	.9375" (15/16)
1000	$1.0000{ }^{\prime \prime}$ (1)
1062	1.0625" (1-1/16)
1125	1.1250" (1-1/8)
1187	1.1875" (1-3/16)
1250	1.2500" (1-1/4)
1312	1.3125" (1-5/16)
1375	1.3750" (1-3/8)
1437	1.4375" (1-7/16)
1500	1.5000" (1-1/2)
1625	1.6250" (1-5/8)
1687	1.6875" (1-11/16)
1750	1.7500" (1-3/4)
1875	1.8750" (1-7/8)
1937	1.9375" (1-15/16)
2000	2.0000 " (2)
2187	2.1875" (2-3/16)
2250	2.2500" (2-1/4)
2437	2.4375" (2-7/16)
2500	2.5000" (2-1/2)

12 " to $144 "$
-72
CHOOSE YOUR
LENGTH.

CODE	LENGTH
-12	$12^{\prime \prime}\left(1^{\prime}\right)$
-24	$24^{\prime \prime}\left(2^{\prime}\right)$
-36	$36^{\prime \prime}\left(3^{\prime}\right)$
-48	$48^{\prime \prime}\left(4^{\prime}\right)$
-72	$72^{\prime \prime}\left(6^{\prime}\right)$
-120	$120^{\prime \prime}\left(10^{\prime}\right)$
-144	$144^{\prime \prime}\left(12^{\prime}\right)$

Nonstandard lengths up to 144 " are available. Lengths over 3' may be subject to a packaging charge.

Round keys - or pin keys - are cylindrical keys inserted into a cylindrical key way that has been drilled and reamed partly in the shaft and partly in the hub while the application is assembled. A tight interference fit is required between the key and the key way to ensure uniformity along the length of the key.
Compared with square, parallel, or hex keys this design results in lower stress concentration making it appropriate for low power applications such as fastening a collar and pulley to a shaft.

For more information on types of fits, see "Getting the Right Fit," page 9.

APPLICATION, ROUND KEY STOCK
MAY BE USED AS SHAFTING AND/ OR CUT-TO-LENGTH MACHINE KEYS

ROUND - METRIC

DESCRIPTION

A stock of material that is one foot or greater in length from which machine keys are made. Undersize round key stock is slightly smaller in diameter than the sizes listed here. It is available in stocked standard sizes or can be custom made to your specifications.

HOW TO IDENTIFY

1. Measure diameter (A).
2. Measure length (C).
3. Build the part number from the chart on the next page.

PREFIX MATERIAL/FINISH
RKM = COLD FINISHED STEEL, PLAIN*
RKMZ $=$ COLD FINISHED STEEL,
ZINC YELLOW TRIVALENT
RKMS $=$ STAINLESS STEEL, PLAIN
Material/finish combinations may not be available in all sizes.

> ROUND KEY STOCK CAN BE PRODUCED IN MANY DIAMETER AND LENGTH COMBINATIONS

DIAMETER (A) TOLERANCES			
MATERIAL		DIAMETER	
(Prefix)	(Material/Finish)	(Size Range)	(Tolerance)
RKM	Cold Finished Steel, Plain*	$\begin{aligned} & 3 \mathrm{~mm} \\ & >3-6 \mathrm{~mm} \\ & >6-18 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & +0 /-0.020 \mathrm{~mm} \\ & +0 /-0.030 \mathrm{~mm} \\ & +0 /-0.040 \mathrm{~mm} \end{aligned}$
RKMZ	Cold Finished Steel, Zinc Yellow Trivalent	$\begin{aligned} & >18-30 \mathrm{~mm} \\ & >30-50 \mathrm{~mm} \\ & >50-70 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & +0 /-0.050 \mathrm{~mm} \\ & +0 /-0.060 \mathrm{~mm} \\ & +0 /-0.070 \mathrm{~mm} \end{aligned}$
RKMS	Stainless Steel, Plain	$\begin{aligned} & 3 \mathrm{~mm} \\ & >3-6 \mathrm{~mm} \\ & >6-18 \mathrm{~mm} \\ & >18-30 \mathrm{~mm} \\ & >30-50 \mathrm{~mm} \\ & >50-70 \mathrm{~mm} \end{aligned}$	$+0 /-0.020 \mathrm{~mm}$ $+0 /-0.030 \mathrm{~mm}$ $+0 /-0.040 \mathrm{~mm}$ $+0 /-0.050 \mathrm{~mm}$ $+0 /-0.060 \mathrm{~mm}$ $+0 /-0.070 \mathrm{~mm}$

LENGTH (C) TOLERANCES	
LENCTH	TOLERANCE
$305-1,000 \mathrm{~mm}$	$+0 /-3.175 \mathrm{~mm}$
$>1,000-3,000 \mathrm{~mm}$	$+0 /-6.35 \mathrm{~mm}$
$>3,000-4,000 \mathrm{~mm}$	$+0 /-152.4 \mathrm{~mm}$

Nonstandard lengths up to $4,000 \mathrm{~mm}$ are available. Lengths over 1 m may be subject to a packaging charge.

USING ROUND KEY STOCK AS SHAFTS

KEY W,AYS C.AN BE MILLED AXIALLY

 ALONG ROUND KEY STOCK TO ALLOWFOR THE USE OF A VARIETY OF HALF-MOON MACHINE KEY PROFILES

[^1]
DIN 671

ROUND - METRIC

ITEM PREFIX

TO ORDER CHOOSE YOUR MATERIAL,

CODE	MATERIAL
RKM-	Carbon Steel, Plain*
RKMZ-	Cold Finished Steel, Zinc Yellow Trivalent
RKMS-	Stainless Steel, Plain

AN ADVANTAGE OF ROUND KEY STOCK IS THATAT IT C.AN BE INST,ALLED IN HOLES BORED IN ASSEMBLED APPLIC,ATIONS FOR A PRECISE FIT

HOW TO BUILD A PART NUMBER
305 mm to $4,000 \mathrm{~mm}$

CODE	LENGTH
-305	$305 \mathrm{~mm}\left(1{ }^{\prime}\right)$
-1000	$1,000 \mathrm{~mm}(1 \mathrm{~m})$
-3000	$3,000 \mathrm{~mm}(3 \mathrm{~m})$
-4000	$4,000 \mathrm{~mm}(4 \mathrm{~m})$

Nonstandard lengths up to $4,000 \mathrm{~mm}$ are available. Lengths over 1 m may be subject to a packaging charge.

RATHER THAN USING A KEY, ROUND KEY
STOCK MIAY BE HELD IN PLACE WITH A SET SCREW OR A DOWEL PIN

Hㅈㅈ - IMPERIAL

DESCRIPTION

Hex key stock is a stock of material that is one foot or greater in length from which hex machine keys are made. This stock has a hexagonal profile. Hex size is measured across parallel flats.

HOW TO IDENTIFY

1. Measure hex across the flats (A).
2. Measure length (C).
3. Build the part number from the chart on the next page.

PREFIX MATERIAL/FINISH
HEX $=$ COLD FINISHED STEEL, PLAIN*
HE $\times 4 \theta=$ COLD FINISHED ALLOY STEEL, PLAIN* (414 $)$
HEXB = BRASS, PLAIN
Material/finish combinations may not be available in all sizes.

HEX (A) TOLERANCES			
MATERIAL		HEX	
(Prefix)	(Material/Finish)	(Size Range)	(Tolerance)
HEX	Cold Finished Steel, Plain*	$\begin{aligned} & .1250-.7500 " \\ & \gg 7500-1.500 " \\ & >1.5000-2.5000 " \\ & >2.5000-4.0000^{\prime \prime} \end{aligned}$	$\begin{aligned} & +0 /-.0020 " \\ & +0 /-.0030 " \\ & +0 /-.0040 " \\ & +0 / .0050 " \end{aligned}$
HEX40	Cold Finished Alloy Steel, Plain* (4140)	$\begin{aligned} & .1250-.7500 " \\ & >.7500-1.500 " \\ & >1.5000-2.5000 " \\ & >2.5000-4.0000 " \end{aligned}$	$\begin{aligned} & +0 /-.0030 " \\ & +0 /-.0040 " \\ & +0 /-.0050 " \\ & +0 /-.0060 " \end{aligned}$
HEXB	Brass, Plain	$\begin{aligned} & .1250 " \\ & >.1250-.5000 " \\ & >.5000-1.0000^{\prime \prime} \\ & >1.0000-2.0000^{\prime \prime} \\ & >2.0000-2.1250 " \\ & >2.1250-2.3750^{\prime \prime} \\ & >2.3750-2.7500^{\prime \prime} \\ & >2.7500-3.2500 " \\ & >3.2500-3.5000 " \\ & >3.5000-4.0000^{\prime \prime} \end{aligned}$	$\begin{aligned} & \pm .0025 " \\ & \pm .0030 " \\ & \pm .0040 " \\ & \pm .0050 " \\ & \pm .0060 " \\ & \pm .0070^{\prime \prime} \\ & \pm .0080 " \\ & \pm .0090^{\prime \prime} \\ & \pm .0110^{\prime \prime} \\ & \pm .0120^{\prime \prime} \end{aligned}$

LENGTH (C) TOLERANCES	
LENGTH	TOLERANCE
$12-36 "$	$+0 /-.125 "$
$>36-<144 "$	$+0 /-.250 "$
$144 "$	$\pm 6 "$

Nonstandard lengths up to 144 " are available. Lengths over 3' may be subject to a packaging charge.

> HEX KEY STOCK CAN BE PRODUCED IN MANY HEX SIZE AND LENGTH COMBINATIONS

WHY CONSIDER USING HEX KEY STOCK INSTEAD OF SQUIARE OR ROUND?

A hex shaft distributes the torque load across six points of contact (the six corners of the hex shaft) as opposed to concentrated points of a key way.

HOW TO BUILD A PART NUMBER HEX-Ө562-144

12 " to 144 "
-144
CHOOSE YOUR
LENGTH.

CODE	LENGTH
-12	$12^{\prime \prime}\left(1^{\prime}\right)$
-24	$24^{\prime \prime}\left(2^{\prime}\right)$
-36	$36^{\prime \prime}\left(3^{\prime}\right)$
-48	$48^{\prime \prime}\left(4^{\prime}\right)$
-72	$72^{\prime \prime}\left(6^{\prime}\right)$
-120	$120^{\prime \prime}\left(10^{\prime}\right)$
-144	$144^{\prime \prime}\left(12^{\prime}\right)$

Nonstandard lengths up to 144 " are available. Lengths over 3' may be subject to a packaging charge.

HEX KEY STOCK IS USED IN SIMPLE MACHINES LIKE THIS CAULKING GUN, OR IN SOPHISTICATED WORM GEAR, HELICAL GEAR, AND BEVEL GEAR SPEED REDUCTION BOXES

AGSORTMEITH

Key Stock Imperial DISP-KSS031	31 Pieces 300 Series Stainless Steel, Plain Display box included.	
Parts Included	Size	Quantity
7001250125-12	$1 / 8{ }^{\prime \prime} \times 1 / 8{ }^{\prime \prime} \times 12^{\prime \prime}$	5
7001870187-12	$3 / 16^{\prime \prime} \times 3 / 16^{\prime \prime} \times 12^{\prime \prime}$	5
7002500250-12	$1 / 44^{\prime \prime} \times 1 / 4{ }^{\prime \prime} \times 12^{\prime \prime}$	5
7003120312-12	$5 / 16^{\prime \prime} \times 5 / 16^{\prime \prime} \times 12^{\prime \prime}$	5
7003750375-12	$3 / 81 \times 3 / 81 \times 12$ "	5
7004370437-12	$7 / 16^{\prime \prime} \times 7 / 16^{\prime \prime} \times 12^{\prime \prime}$	3
7005000500-12	$1 / 2^{\prime \prime} \times 1 / 2^{\prime \prime} \times 12^{\prime \prime}$	3

$\begin{gathered} \text { Key Stock } \\ \text { Imperial } \\ \text { DISP-KSZC031 } \end{gathered}$	31 Pieces Cold Finished Steel, Zinc Clear Trivalent Display box included.	
Parts Included	Size	Quantity
3101250125-12	$1 / 8 " \times 1 / 8 " \times 12^{\prime \prime}$	5
3101870187-12	$3 / 16^{\prime \prime} \times 3 / 16^{\prime \prime} \times 12^{\prime \prime}$	5
3102500250-12	$1 / 4 " \times 1 / 4{ }^{\prime \prime} \times 12^{\prime \prime}$	5
3103120312-12	$5 / 16^{\prime \prime} \times 5 / 16^{\prime \prime} \times 12^{\prime \prime}$	5
3103750375-12	$3 / 8 " \times 3 / 8 " \times 12^{\prime \prime}$	5
3104370437-12	$7 / 16^{\prime \prime} \times 7 / 16^{\prime \prime} \times 12^{\prime \prime}$	3
3105000500-12	$1 / 2^{\prime \prime} \times 1 / 2^{\prime \prime} \times 12^{\prime \prime}$	3

Key StoCK Imperial DISP-KSB031	31 Pieces Brass, Plain Display box included.	
Parts Included	Size	Quantity

Round Key Stock
 Imperial DISP-KSRSS031
 Imperial DISP-KSRSS031

Parts Included
RKS-0125-12
RKS-0187-12
RKS-0250-12
RKS-0312-12
RKS-0375-12
RKS-0437-12
RKS-0500-12

31 Pieces
300 Series Stainless Steel, Plain Display box included.

Size	Quantity
$1 / 8^{\prime \prime} \times 12^{\prime \prime}$	5
$3 / 16^{\prime \prime} \times 12^{\prime \prime}$	5
$1 / 4^{\prime \prime} \times 12^{\prime \prime}$	5
$5 / 16^{\prime \prime} \times 12^{\prime \prime}$	5
$3 / 8^{\prime \prime} \times 12^{\prime \prime}$	5
$7 / 16^{\prime \prime} \times 12^{\prime \prime}$	3
$1 / 2^{\prime \prime} \times 12^{\prime \prime}$	3

Round Key Stock Imperial DISP-KSRZ060	60 Pieces Cold Finished Steel, Zinc Clear Trivalent . play box included.	
Parts included	Size	Quantity
RKZ-012-12	$1 / 8{ }^{\text {" }} 12{ }^{\text {\% }}$	-
RKK-0187-12	3/16" $\times 12^{\prime \prime}$	10
RKZ-0250-12	$1 / 4^{\prime \prime} \times 12^{\prime \prime}$	10
RK2-0312-12	$5166^{\prime \prime} \times 12^{\prime \prime}$	10
RK2-0375-12	$3 / 88^{\prime \prime} \times 12^{\prime \prime}$	10
RKK-0437-12	$7116^{\prime \prime} \times 12^{\prime \prime}$	5
RKz-0500-12	$112^{\prime \prime} \times 12^{\prime \prime}$	5

All key stock assortments are undersize material unless stated otherwise.

ASGORTMIENTS

Key Stock Metric DISP-KSM031	31 Pieces Cold Finished Steel, Plain* Display box included.	
Parts Included	Size	Quantity
300404-305	$4 \mathrm{~mm} \times 4 \mathrm{~mm} \times 305 \mathrm{~mm}$	4
300505-305	$5 \mathrm{~mm} \times 5 \mathrm{~mm} \times 305 \mathrm{~mm}$	4
300606-305	$6 \mathrm{~mm} \times 6 \mathrm{~mm} \times 305 \mathrm{~mm}$	4
300808-305	$8 \mathrm{~mm} \times 8 \mathrm{~mm} \times 305 \mathrm{~mm}$	3
301010-305	$10 \mathrm{~mm} \times 10 \mathrm{~mm} \times 305 \mathrm{~mm}$	3
301212-305	$12 \mathrm{~mm} \times 12 \mathrm{~mm} \times 305 \mathrm{~mm}$	3
301414-305	$14 \mathrm{~mm} \times 14 \mathrm{~mm} \times 305 \mathrm{~mm}$	2
301616-305	$16 \mathrm{~mm} \times 16 \mathrm{~mm} \times 305 \mathrm{~mm}$	2
301818-305	$18 \mathrm{~mm} \times 18 \mathrm{~mm} \times 305 \mathrm{~mm}$	2
302020-305	$20 \mathrm{~mm} \times 20 \mathrm{~mm} \times 305 \mathrm{~mm}$	2
302222-305	$22 \mathrm{~mm} \times 22 \mathrm{~mm} \times 305 \mathrm{~mm}$	2

Key Stock Metric	31 Pieces 300 Series Stainless	
DISP-KSMS031	Steel, Plain Display box included.	
Parts Included	Size	Quantity
$700404-305$	$4 \mathrm{~mm} \times 4 \mathrm{~mm} \times 305 \mathrm{~mm}$	5
$700505-305$	$5 \mathrm{~mm} \times 5 \mathrm{~mm} \times 305 \mathrm{~mm}$	5
$700606-305$	$6 \mathrm{~mm} \times 6 \mathrm{~mm} \times 305 \mathrm{~mm}$	5
$700707-305$	$7 \mathrm{~mm} \times 7 \mathrm{~mm} \times 305 \mathrm{~mm}$	5
$700808-305$	$8 \mathrm{~mm} \times 8 \mathrm{~mm} \times 305 \mathrm{~mm}$	5
$701010-305$	$10 \mathrm{~mm} \times 10 \mathrm{~mm} \times 305 \mathrm{~mm}$	3
$701212-305$	$12 \mathrm{~mm} \times 12 \mathrm{~mm} \times 305 \mathrm{~mm}$	3

Key Stock Metric	31 Pieces Cold Finished Steel, Zinc Yellow Trivalent	
DISP-KSMZY031	Display box included.	
Parts Included	Size	Quantity
$310404-305$	$4 \mathrm{~mm} \times 4 \mathrm{~mm} \times 305 \mathrm{~mm}$	5
$310505-305$	$5 \mathrm{~mm} \times 5 \mathrm{~mm} \times 305 \mathrm{~mm}$	5
$310606-305$	$6 \mathrm{~mm} \times 6 \mathrm{~mm} \times 305 \mathrm{~mm}$	5
$310707-305$	$7 \mathrm{~mm} \times 7 \mathrm{~mm} \times 305 \mathrm{~mm}$	5
$310808-305$	$8 \mathrm{~mm} \times 8 \mathrm{~mm} \times 305 \mathrm{~mm}$	5
$311010-305$	$10 \mathrm{~mm} \times 10 \mathrm{~mm} \times 305 \mathrm{~mm}$	3
$311212-305$	$12 \mathrm{~mm} \times 12 \mathrm{~mm} \times 305 \mathrm{~mm}$	3

REACH \$ ROHS

Huyett is committed to maintaining the safety of our environment. The processes for plating and coating steels have the potential of introducing harmful chemical substances into the environment and are strictly controlled. Huyett complies with all environmental regulations and laws which apply to our products and services.

Learn more at huyett.com/quality.

REACH

Registration, Evaluation, Authorization, and Restriction of Chemical Substances

Unless specifically stated, our standard cold finished steel key stock (30 series) is any one of the following grades, subject to market availability: $1018,1035,1045,1095,1215$, or 8630 . Our standard stainless steel key stock (70 series) is any 300 series (A1-A5) stainless steel subject to market availability. Call for precise grade.
1/4" x 1/4" (-SIZE)

[^2]
MACHINE KEY FEATURES

Machine keys are removable machine elements installed between shaft key seats and hub key ways to transmit torque in power transmission assemblies. They can be machined; finished in a variety of shapes, sizes, and materials; and tumbled by the thousands for automated assembly lines or just about any application. Though simple in design, they are a necessity in the transfer of power.

THE TERMS SHAFT KEYS AND MACHINE KEYS ARE USED INTERCHANGEABLY TO DESCRIBE THE S.AME THING

DESIGN CONSIDERATIONS

MACHINE KEYS ARE AN EFFICIENT SOLUTION FOR APPLICATIONS REQUIRING THE TR,ANSMISSION OF TORQUE IN AN ASSEMBLY

EASE OF USE

TABBED AND TAPERED GIB HEAD KEYS SECURE PULLEYS AND GEARS TIGHTLY WHILE ALLOWING FOR QUICK REMOVAL DURING DISASSEMBLY

UNDERSIZE KEYS FIT LOOSELY OTHERS FIT SNUGGLY, AND OVERSIZE KEYS CAN BE FILED TO FIT SEE PAGE 8 FOR MORE DETAILS

LOCATION

DEPENDING ON THE APPLICATION, KEY WUYS ARE LOCATED AT THE END OR ALONG THE LENGTH OF THE SH,AFT

LOCATION CAN IMPACT KEY DESIGN

FUNCTION

MACHINE KEYS MAY SHEAR UNDER STRESS TO PROTECT PEOPLE AND EXPENSIVE EQUIPMENT

CORNER DESIGNS

SHARP, SQUIARE CORNERS PROVIDE THE MOST SURFACE CONTACT WHILE RADIUSED OR CH.AMFERED CORNERS ARE A LITTLE EASIER TO INSTALL AND FULLY SEAT IN A KEY W,AY

KEYS FOR EVERY APPLICATION

Top fitting gib head keys ease assembly and disassembly.

Parallel keys located in key ways at the end of a shaft may protrude for full contact between key and shaft.

Key ways located along the length of a shaft allow for full contact in assembly with no way for the key to work itself out.

Woodruff Keys are frequently used with tapered shafts. Although more difficult to install, they can not fall out of an assembly.

FORM B

Form B machine keys with both ends square feature straight, 90° parallel sides and provide the most surface contact with both the key seat and the hub of a sprocket, gear, pulley, or cog.

PAGE 56

WOODRUFF

Woodruff keys are used to avoid milling a key way near stress concentration prone shaft shoulders at the end of a shaft. With a woodruff key, the key way does not extend to the end of the shaft so a stronger design is realized.

FORM A

More common in Europe than the U.S., form A machine keys have rounded end profiles so the key fully fills a milled key way. Some users suggest that the round design eases installation into the key way.

PAGE 56

CIB HEAD

Gib head keys are tapered machine keys that are hammered in place to secure pulleys and gears tightly on the shaft. The added feature of a head provides for easy removal.

A variation of the woodruff key is the highprofile or hi-pro key. These keys have "feet" that prevent the key from rocking and limit movement in a rounded key way.

PAGE 7θ

PAGE 84

PAGE 78

OVERSIZE OR UNDERSIZE?

OVERSIZE
The actual size of oversize material will be at least the specified size and may be slightly larger than the specified size within the acceptable tolerance range

UNDERSIZE

The actual size of undersize material will be at least the specified size and may be slightly smaller than the specified size within the acceptable tolerance range.

DESICN \& USE

MACHINE KEY FORMS \& MILLING KEY WAYS

FORM A
Key ways are typically milled using an end-mill tool. The circular shape of the end-mill creates a slot on the surface of the shaft. Round-end keys occupy the entire slot, while square-end keys leave a void at either end of the slot.

THE TERMS KEY WAY AND KEY SEAT ARE USED INTERCHANGEABLY TO DESCRIBE THE SAME THING

END MILL ENTERS SURFACE AREA OF SHAFT CRE,ATING A RADIUSED END

END MILL PROCEEDS $A \times 1,4 L L Y$ DOUN THE SH,AFT SURFACE

UPON EXIT, THE END MILL FORMS ANOTHER RADIUSED END

TYPES OF KEY WAYS

PROFILE OR CLOSED
MILLED ALONG LENGTH OF THE SH,AFT, BUT DOES NOT EXTEND TO END OF THE SH,AFT

SLED RUNNER
LOOK LIKE THE RUNNERS OF A SLED WITH A ROUND TAPER ON ONE END

WOODRUFF OR HI-PRO
is Cut along the Lengit of the shaft with AN ARBOR CUTTING TOOL

FOR BEST RESULTS, ENLIST THE HELP OF A RELIABLE DESIGN ENGINEER WHEN DESIGNING NEW APPLICATIONS

DESICN \& USE

CUTTING CORNERS

Square key way with square key stock

Radiused key way with square key stock

Radiused key way with radiused key stock

```
KEY W.AYS MAY HAVE FILLETED (ROUNDED) CORNERS TO DECRE,ASE STRESS CONCENTRATION
KEY STOCK WITH SQUIARE CORNERS WILL NOT FULLY SEAT IN FILLETED KEY W,AYS
```


HOLD ON LOOSELY

Over-radiused machine keys with "rolled" corners fit looser in a key way and can lead to "rattling."

INTERFERENCE FIT

A tight, interference fit, is produced when the machine key is slightly larger than the key way it is installed in. See page 8 for more details.

FRETTING

Keys may fail if they are crushed due to excessive compression, bearing forces, or shear off in catastrophic failure.

Keys can also wear out or get distorted through fretting from high pressure and constant load.

A machine key may wear out or get distorted from high pressure and/or constant load bearing.

CATASTROPHIC FAILURE

If an application fails a machine key may shear or be crushed on load and will need to be replaced.

SELECTING THE RIGHT KEY

A number of considerations contribute to machine key design. Some designs are based on how the parts are used, while others look at how the parts are manufactured or enhance efficiency in assembly. For best results, consult with a design engineer when developing a new application.

PARALLEL KEYS

Square and rectangle profiles are the most common forms for parallel keys. They are often referred to as straight keys.

Parallel or straight keys are more common in the U.S. and cost less to produce than feathered keys. They are "side fitting" which means they fit edge to edge in the key way.

FEATHERED

Feathered keys are parallel keys with round ends. They are more common in Europe. The round end design allows for the key to fully seat in the key way.

OVERSIZE OR UNDERSIZE?

OVERSIZE

The actual size of oversize material will be at least the specified size and may be slightly larger than the specified size within the acceptable tolerance range.

UNDERSIZE

The actual size of undersize material will be at least the specified size and may be slightly smaller than the specified size within the acceptable tolerance range.

GIB HEAD KEYS

Gib head keys are designed for applications that require periodic maintenance or removal during disassembly.

Typically the height is less than width. Gib head keys fit in the key way with "top and side fitting" which bears load on all sides.

Tapers are expressed in terms of rise over run. In other words, the amount of taper is stated per linear units of measure. A $1 / 8^{\prime \prime}$ taper per foot means that for every $12^{\prime \prime}$ in linear distance (run) the thickness of the part (rise) decreases by $0.125^{\prime \prime}$. Metric taper is $1: 100$.

BOTH THE GIB KEY AND THE HUB KET WAT ARE TAPERED

SELECTING THE RICHT KEY

WOODRUFF KEYS

Woodruff keys, sometimes referred to as "half-moon" keys because of their shape, are designed to install and pivot in the key way and will not fall out once assembled.

W.N. WOODRUFF

Woodruff keys were invented by W.N. Woodruff of Connecticut in 1888. The main purpose of the woodruff key is to avoid milling a key way near the stress concentrated end of a shaft.

PROPER INSTALLATION

COOD

WOODRUFF KEYS
Woodruff keys should be installed with the low side toward the hub. During installation the key will rock in the key way allowing for a tight fit.

If the key is installed with the high side to the hub, the key will catch causing improper installation and risk damage to the assembly.

HI-PRO KEYS
Hi-pro keys eliminate any play or movement during installation.

HI-PRO KEYS

Hi-pro keys perform like woodruff keys, but have the added benefit of "feet" that aid in installation by eliminating the potential for the key to rock in the key way.

ALSO AVAILABLE

HEX AND ROUND MACHINE KEYS ARE AVAILABLE AS A SPECIAL ORDER

SEE PAGES $4 \theta-45$ FOR HEX AND ROUND KEY STOCK

CUSTOM CONFIGURATIONS

DON'T SEE WHAT YOU'RE LOOKING FOR?

HUYETT.COM • 785-392-3017

CUICK RETERIENCE GUIDE

Machine keys are used to transmit torque from a rotating shaft to a gear or sprocket. They can be finished in a variety of shapes, sizes, and materials for just about any application. Standard sizes are ready to use with little or no cutting or filing.

| | | |
| :--- | :--- | :--- | :--- |

QUCK REFERANCE GUIDE

	WOODRUFF	HI-PRO
COMMON NAMES	Half-moon Key; Round Key	High Profile Keys
APPLICABLE		
STANDARDS	ANSI B17.1; DIN 6888	ANSI B17.1; Industry norm
FABRICATION	Cold drawn profile; cut to width; grind; tumble.	Cold drawn profile; cut to width; grind; tumble.
HOU TO		Imperial is measured diameter \times width. Metric is measured width \times height. Woodruff keys may have round or flat bottoms depending on specifications.

SPECIAL ORDER METRIC DIN 6885

Machine keys can be designed with special dimensional features like set screws, tapers, and other attributes. Mechanical features like tensile strength, shear strength, and wear resistance can be enhanced by material and secondary processes (like heat treating) that give parts added benefits.

Form C

Form E

Form G

Form H

Form J

Form K

FOR BEST RESULTS, ENLIST THE HELP OF A RELIABLE DESIGN ENGINEER WHEN DESIGNING NEW APPLICATIONS

HUYETT.COM • 785-392-3017

COLD FINISHED STAEAL - IMPERIAL

DESCRIPTION

Machine keys are used to transmit torque from a rotating shaft to a gear or sprocket. They can be finished in a variety of shapes, sizes, and materials for just about any application. Standard sizes are ready to use with little or no cutting or filing.

HOW TO IDENTIFY

1. Measure height (A).
2. Measure width (B).
3. Measure length (C).
4. Build the part number from the chart on the next page.

PREFIX MATERIAL/FINISH

FORM B
UNDERSIZE

30	$=$
31	$=$
45	$=$
46	$=$
65	$=$
66	$=$

Cold Finished Steel, Plain*
Cold Finished Steel, Zinc Clear Trivalent
Cold Finished Steel, Plain* (1045)
Cold Finished Steel, Zinc Clear Trivalent (1045)
Cold Finished Alloy Steel, Plain* (4140)
Cold Finished Alloy Steel, Zinc
Clear Trivalent (4140)
OVERSIZE
$35=$ Cold Finished Steel, Plain*
$36=$

Cold Finished Steel, Zinc Clear Trivalent

SEE PAGE 66 FOR

 TOLERANCESFORM A
UNDERSIZE

32	$=$	Cold Finished Steel, Plain*
$32 Z$	$=$	Cold Finished Steel, Zinc Clear Trivalent
47	$=$	Cold Finished Steel, Plain* (1045)
67	$=$	Cold Finished Alloy Steel, Plain* (4140)
OVERSIZE		

37 = Cold Finished Steel, Plain*
Material/finish combinations may not be available in all sizes. Unless specifically stated, our standard machine key stock (30 series) is any one of the following grades, subject to market availability: $1018,1035,1045,1095,1215$, or 8630 . Call for precise grade.

MOLTRUP

DESCRIPTION

Machine keys are used to transmit torque from a rotating shaft to a gear or sprocket. They can be finished in a variety of shapes, sizes, and materials for just about any application. Standard sizes are ready to use with little or no cutting or filing.

HOW TO IDENTIFY

1. Measure height (A).
2. Measure width (B).
3. Measure length (C).
4. Build the part number from the chart on the next page.

PREFIX MATERIAL/FINISH

FORM B
$60=$
Moltrup Quality Steel, Plain* (1045 or 8630)

Moltrup Quality Steel, Plain* (1045 or 8630)
Moltrup quality steel is " + " tolerance from nominal (true "key stock" in accordance with ANSI B17.1). Material/finish combinations may not be available in all sizes.

This exquisitely detailed HO scale model of the Moltrup Steel Company was produced by David Moltrup, great-grandson of one of the founders of the company.

To learn more about the Moltrup Steel Company, see page 34.

Nonstandard sizes up to
2-1/2" are available.

CHOOSE YOUR LENGTH.

Nonstandard lengths less than 12 " are available.

```
    DON'T SEE UHAT
    YOU'RE LOOKING
    FOR? CONTACT
SALES@HUYETT.COM
    OR
    CALL 785-392-3017
```


COLD FIUNSHED STコニ는 - METRIC

DESCRIPTION

Machine keys are used to transmit torque from a rotating shaft to a gear or sprocket. They can be finished in a variety of shapes, sizes, and materials for just about any application. Standard sizes are ready to use with little or no cutting or filing.

HOW TO IDENTIFY

1. Measure width (A).
2. Measure height (B).
3. Measure length (C).
4. Build the part number from the chart on the next page.
FORMB

PREFIX
 MATERIAL/FINISH

FORM B
UNDERSIZE
$30=$
$31=$
Cold Finished Steel, Plain*

OVERSIZE
35 =
Cold Finished Steel, Plain*
$36=\quad$ Cold Finished Steel, Zinc Clear Trivalent

SEE PAGE 66 FOR TOLERANCES

FORM A
UNDERSIZE
$32=$
$=$ Cold Finished Steel, Plain*
$32 Z=$ Cold Finished Steel, Zinc Clear Trivalent
OVERSIZE
$37=$
Cold Finished Steel, Plain*
Material/finish combinations may not be available in all sizes. Unless specifically stated, our standard machine key stock (30 series) is any one of the following grades, subject to market availability: $1018,1035,1045,1095,1215$, or 8630 . Call for precise grade.

MEASURING METRIC KEYS
Metric machine keys are available in square or rectangle profiles.

Metric machine keys call out width (A) first, then height (B).

DON'T SEE WHAT YOU'RE LOOKING FOR? CONTACT SALESQHUYETT.COM OR
CALL 785-392-3017

HOW TO BUILD A PART NUMBER
ALL PARTS
SEE PAGE 16

ITEM PREFIX

CHOOSE YOUR WIDTH,

2 mm to 50 mm

CODE	WIDTH \$ HEIGHT SIZE OPTIONS
02	2.00 mm
03	3.00 mm
04	4.00 mm
05	5.00 mm
06	6.00 mm
07	7.00 mm
08	8.00 mm
09	9.00 mm
10	10.00 mm
11	11.00 mm
12	12.00 mm
13	13.00 mm
14	14.00 mm
15	15.00 mm
16	16.00 mm
18	18.00 mm
20	20.00 mm
22	22.00 mm
24	24.00 mm
25	25.00 mm
28	28.00 mm
30	30.00 mm
32	32.00 mm
36	36.00 mm
40	40.00 mm
45	45.00 mm
50	50.00 mm

Nonstandard sizes up to 50 mm are available.

MRNUFRCTURING
 CRPRBILITIES:

Sawing

Milling

Drilling

Turning

Tumbling

Surface Grinding

HUYETT.COM • 785-392-3017

STAINLFSS \& NONFERROUS - IMPERIAL

DESCRIPTION

Machine keys are used to transmit torque from a rotating shaft to a gear or sprocket. They can be finished in a variety of shapes, sizes, and materials for just about any application. Standard sizes are ready to use with little or no cutting or filing.

HOW TO IDENTIFY

1. Measure height (A).
2. Measure width (B).
3. Measure length (C).
4. Build the part number from the chart on the next page.
FORMB

PREFIX

MATERIAL/FINISH

FORM B
STAINLESS STEEL

70	$=$	300 Series Stainless Steel, Plain**
75	$=$	300 Series Stainless Steel, Plain, Oversize
80	$=$	316 Stainless Steel, Plain**
85	$=$	416 Stainless Steel, Plain**
ONFERROUS		
04	$=$	
06	$=$	Aluminum, Plain**
	Brass, Plain**	

FORM A

STAINLESS STEEL

72	$=$	300 Series Stainless Steel, Plain, Squares**
77	$=$	300 Series Stainless Steel, Plain, Oversize
82	$=$	316 Stainless Steel, Plain**
87	$=$	416 Stainless Steel, Plain**

Material/finish combinations may not be available in all sizes.
-•Depending on profile, size can vary over or under from nominal size.

SEE PAGE 66 FOR TOLERANCES

STAMNLESS \& NONFERROUS - IMPERIAL

HOW TO BUILD A PART NUMBER $8 \theta \theta 5 \theta \theta 25 \theta \theta-275 \theta$

*-Depending on profile, size can vary over or under from nominal size.

$$
\begin{aligned}
& 18-8 \text { IS NOT A } \\
& \text { SPECIFICATION } \\
& \text { FOR STAINLESS STEEL } \\
& \text { HUYETT CONSIDERS } \\
& \text { 18-8 TO BE ANY } 3 \ominus \theta \\
& \text { SERIES STAINLESS STEEL }
\end{aligned}
$$

CHOOSE YOUR WIDTH,

CODE	HEIGHT \$ WIDTH SIZE OPTIONS
0062	.0625" (1/16)
0093	.0938" (3/32)
0125	.1250" (1/8)
0156	.1563" (5/32)
0187	.1875" (3/16)
0218	.2188" (7/32)
0250	.2500" (1/4)
0281	.2813" (9/32)
0312	. 3125 " (5/16)
0375	.3750" (3/8)
0437	.4375" (7/16)
0500	.5000" (1/2)
0562	.5625" (9/16)
0625	.6250" (5/8)
0687	.6875" (11/16)
0750	.7500" (3/4)
0812	.8125" (13/16)
0875	.8750" (7/8)
0937	.9378" (15/16)
1000	1.0000 " (1)
1062	1.0625" (1-1/16)
1125	1.1250" (1-1/8)
1187	1.1875" (1-3/16)
1250	1.2500 " (1-1/4)
1375	1.3750" (1-3/8)
1500	1.5000" (1-1/2)
1625	1.6250" (1-5/8)
1750	1.7500" (1-3/4)
1875	1.8750" (1-7/8)
2000	2.0000 " (2)
2250	2.2500" (2-1/4)
2500	2.5000" (2-1/2)

Nonstandard sizes up to 2-1/2" are available.

LIST THE SMALLER
DIMENSION OF (A) OR (B) FIRST

CODE	LENGTH
0187	$.1875^{\prime \prime}(3 / 16)$
0250	$.2500^{\prime \prime}(1 / 4)$
0375	$.3750^{\prime \prime}(3 / 8)$
0500	$.5000^{\prime \prime}(1 / 2)$
0625	$.6250^{\prime \prime}(5 / 8)$
0750	$.7500^{\prime \prime}(3 / 4)$
0875	$.8750^{\prime \prime}(7 / 8)$
1000	$1.0000^{\prime \prime}(1)$
1500	$1.5000^{\prime \prime}(1-1 / 2)$
2000	$2.0000^{\prime \prime}(2)$
4000	$4.0000^{\prime \prime}(4)$
6000	$6.0000^{\prime \prime}(6)$
8000	$8.0000^{\prime \prime}(8)$
10	$10.0000^{\prime \prime}(10)$
11	$11.0000^{\prime \prime}(11)$
11.5	$11.5000^{\prime \prime}(11-1 / 2)$

Nonstandard lengths less than 12 " are available.

> DON'T SEE WHAT YOU'RE LOOKING FOR? CONTACT SALES@HUYETT.COM OR
> CALL 785-392-3017

HUYETT.COM • 785-392-3017

STAMN EGS STIE=1- METRIC

DESCRIPTION

Machine keys are used to transmit torque from a rotating shaft to a gear or sprocket. They can be finished in a variety of shapes, sizes, and materials for just about any application. Standard sizes are ready to use with little or no cutting or filing.

HOW TO IDENTIFY

1. Measure width (A).
2. Measure height (B).
3. Measure length (C).
4. Build the part number from the chart on the next page.

PREFIX MATERIAL/FINISH

FORM B
UNDERSIZE
$70=300$ Series Stainless Steel, Plain
$80=316$ Stainless Steel, Plain
OVERSIZE
$75=300$ Series Stainless Steel, Plain
FORM A
UNDERSIZE
$72=$
300 Series Stainless Steel, Plain
Material/finish combinations may not be available in all sizes.

SEE PAGE 66 FOR TOLERANCES

ALSO AVAILABLE

With in-house engineering support and a complete manufacturing facility, we can make your custom part.

> Give our Sales Team a call today.
> 7日5-392-3017

HUYETT.CDM

STAINI-FSS STEFL - METRIC

HOW TO BUILD A PART NUMBER
ITEM PREFIX
ORDER CHOOSE YOUR MATERIAL,

CODE	MATERIAL
70	300 Series Stainless Steel, Plain, Undersize, Form B
72	300 Series Stainless Steel, Plain, Undersize, Form A
75	300 Series Stainless Steel, Plain, Oversize, Form B
80	316 Stainless Steel, Plain, Undersize, Form B

LIST THE LARGER DIMENSION OF (A) OR (B) FIRST

4 mm to <305 mm

CHOOSE YOUR LENGTH.

CODE	LENGTH
004	4.00 mm
008	8.00 mm
010	10.00 mm
012	12.00 mm
014	14.00 mm
025	25.00 mm
030	30.00 mm
040	40.00 mm
050	50.00 mm
063	63.00 mm
070	70.00 mm
080	80.00 mm
090	90.00 mm
100	100.00 mm
120	120.00 mm
150	150.00 mm
180	180.00 mm
200	200.00 mm
220	220.00 mm
250	250.00 mm
280	280.00 mm
300	300.00 mm

Nonstandard lengths less than 305 mm are available.

DON'T SEE WHAT YOU'RE LOOKING FOR? CONTACT SALES@HUYETT.COM OR
CALL 785-392-3017

INIPERIAL TOLERANCES

MATERIAL	FORM	SQUARE		RECTANG:E	LENGTH
(Prefix) (Material/Finish)		(Size Range) \quad (Tolerance)	(Size Range)	(Tolerance)	(Size Range)

Cold Finished Steel								
30	Cold Finished Steel, Plain*, Undersize	Form B	$\begin{aligned} & .0625-.7500 " \\ & >.7500-1.5000 " \\ & >1.5000-2.5000 " \\ & >2.5000 "+ \end{aligned}$	$\begin{aligned} & +0 /-.0020 " \\ & +0 /-.0030 " \\ & +0 /-.0040 " \\ & +0 /-.0060 " \end{aligned}$	$\begin{aligned} & .0938-.7500 " \\ & >.7500-1.5000 " \\ & >1.5000-3.0000 " \\ & >3.0000 "+ \end{aligned}$	$\begin{aligned} & +0 /-.0030 " \\ & +0 /-.0040 " \\ & +0 /-.0050 " \\ & +0 /-.0060 " \end{aligned}$	All sizes	+0/-.0300"
31	Cold Finished Steel, Zinc Clear Trivalent, Undersize							
32	Cold Finished Steel, Plain*, Undersize							
$32 Z$	Cold Finished Steel, Zinc Clear Trivalent, Undersize							
35	Cold Finished Steel, Plain*, Oversize		$\begin{aligned} & .0625-.7500^{"} \\ & >.7500-1.5000 " \\ & >1.5000-2.5000 " \end{aligned}$	$\begin{aligned} & +.0020 /-0 " \\ & +.0030 / 0 " \\ & +.0040 / 0 " \end{aligned}$	$\begin{aligned} & .1875-.7500 " \\ & >.7500-1.5000 " \\ & >1.5000-3.0000 " \end{aligned}$	$\begin{aligned} & +.0030 /-0 " \\ & +.0040 /-0 " \\ & +.0050 /-0 " \end{aligned}$	All sizes	+0/-.0300"
36	Cold Finished Steel, Zinc Clear Trivalent, Oversize							
37	Cold Finished Steel, Plain*, Oversize	Form A						
45	Cold Finished Steel, Plain* (1045), Undersize		$\begin{aligned} & .0625-.7500^{\prime \prime} \\ & >.7500-1.5000 " \\ & >1.5000-2.5000 " \end{aligned}$	$\begin{aligned} & +0 /-.0040 " 1 \\ & +0 /-.0050 " \\ & +0 / .0060 " \end{aligned}$	$\begin{aligned} & .2500-.7500 " \\ & >.7500-1.5000 " \\ & >1.5000-3.0000^{" ~} \end{aligned}$	$\begin{aligned} & +0 /-.0040 " \\ & +0 /-.0050 " \\ & +0 /-.0060 " \end{aligned}$	All sizes	+0/-.0300"
46	Cold Finished Steel, Zinc Clear Trivalent, Undersize							
47	Cold Finished Steel, Plain* (1045), Undersize	Form A						
65	Cold Finished Alloy Steel, Plain* (4140), Undersize		$\begin{aligned} & .0625-.7500^{\prime \prime} \\ & >.7500-1.5000 " \\ & >1.5000-3.0000 " \end{aligned}$	$\begin{aligned} & +0 /-.005 " \\ & +0 / .006 " \\ & +0 /-.007 " 1 \end{aligned}$	$\begin{aligned} & .0625-.7500 " \\ & >.7500-1.5000 " \\ & >1.5000-3.0000 " \end{aligned}$	$\begin{aligned} & +0 /-.005^{\prime \prime} \\ & +0 /-.006^{\prime \prime} \\ & +0 /-.007 " \end{aligned}$	All sizes	+0/-.0300"
66	Cold Finished Steel, Zinc Clear Trivalent, Undersize							
67	Cold Finished Alloy Steel, Plain* (4140), Undersize	Form A						

Moltrup								
60	Moltrup Quality Steel, Plain* (1045 or 8630)	Form B	$\begin{aligned} & .0625-1.2500 " \\ & >1.2500-3.0000 " \end{aligned}$	$\begin{aligned} & +.0010 /-0 " \\ & +.0020 /-0 " \end{aligned}$	$\begin{array}{ll} \text { (Width) } & \\ .0625-1.2500 " & +.0010 /-0 " \\ >1.2500-3.0000 " & +.0020 /-0 " \\ \text { (Height) } & \\ .0625-7.0000 " & \pm .0050 " \end{array}$		All Sizes	+0/-.0300"
62	Moltrup Quality Steel, Plain* (1045 or 8630)	Form A						

Note: Unless specifically stated, our standard machine key stock (30 series) is any one of the following grades, subject to market availability: 1018, 1035, 1045, 1095, 1215, or 8630 . Call for precise grade.

IUPPERIAL TOLERANCES

**Depending on profile, size can vary over or under from nominal size.

ENVIRONMENTAL CONCERNS

Huyett is committed to maintaining the safety of our environment. The processes for plating and coating steels have the potential of introducing harmful chemical substances into the environment and are strictly controlled. Huyett complies with all environmental regulations and laws which apply to our products and services.

Learn more at huyett.com/quality.

REACH
Registration,
Evaluation, Authorization, and Restriction of Chemical Substances

RoHS

Restriction of Hazardous Substances

MATERIAL	FORM	SQUARE	RECTANGLE	LENGTH		
(Prefix) \quad (Material/Finish)		(Size Range) (Tolerance)	(Size Range)	(Tolerance)	(Size Range)	(Tolerance)

Cold Finished Steel								
30	Cold Finished Steel, Plain*, Undersize	Form B	$\begin{aligned} & 0-3 \mathrm{~mm} \\ & >3-6 \mathrm{~mm} \\ & >6-10 \mathrm{~mm} \\ & >10-19 \mathrm{~mm} \\ & >19-30 \mathrm{~mm} \\ & >30-50 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & +0 /-0.025 \mathrm{~mm} \\ & +0 /-0.030 \mathrm{~mm} \\ & +0 /-0.036 \mathrm{~mm} \\ & +0 /-0.043 \mathrm{~mm} \\ & +0 /-0.052 \mathrm{~mm} \\ & +0 /-0.062 \mathrm{~mm} \end{aligned}$	See "DIN 6880 Standard Tolerancing for Flat Metric Steels," page 32.		$\begin{aligned} & 10-28 \mathrm{~mm} \\ & >28-80 \mathrm{~mm} \\ & >80-250 \mathrm{~mm} \\ & >250 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & +0 /-0.200 \mathrm{~mm} \\ & +0 /-0.300 \mathrm{~mm} \\ & +0 /-0.500 \mathrm{~mm} \\ & \text { Call for } \\ & \text { tolerance. } \end{aligned}$
31	Cold Finished Steel, Zinc Clear Trivalent, Undersize							
32	Cold Finished Steel, Plain*, Undersize							
$32 Z$	Cold Finished Steel, Zinc Clear Trivalent, Undersize							
35	Cold Finished Steel, Plain*, Oversize		All Sizes	+0.076/-0 mm	All Sizes	+0.076/-0		
36	Cold Finished Steel, Zinc Clear Trivalent, Oversize							
37	Cold Finished Steel, Plain*, Oversize	Form A						

Note: Unless specifically stated, our standard machine key stock (30 series) is any one of the following grades, subject to market availability: $1018,1035,1045,1095,1215$, or 8630 . Call for precise grade.

Over 100,000 Industrial Fasteners \& Components, and Premium Lifting Hardware

PINS \&
WIREFORMS

GREASE FITTINGS \& ACCESSORIES

RETAINING RINGS, CLIPS,
COLLARS, WASHERS, \& SHIMS

ENGINEERED
FASTENERS

KEY STOCK \& MACHINE KEYS

PREMIUM LIFTING HARDWARE

PROUD DISTRIBUTOR DF

(H) Herititase

Hose Clamps, Bridge Pins, Cotter Pins, Hitch Pins, Shaft Collars, \& Grease Fittings

MAK-A-KI:Y

Precision Key Stock

 \& Machine Keys

Lifting Eye Bolts \& Nuts, Turnbuckles, Turnbuckle Ends, Rod Ends, Shackles, Hooks, \& Rope \& Chain Hardware

hANDITHEK
 a big name in small parts
 EXPANOPIN

Ready-Made \& Custom
Fastener Assortments \& Kits

TECsERIES

DRIEOK. ARaymond:

Groove Pins
1 -

Speed Nuts, Expansion Nuts, U-Nuts, Self-Thread Lock Nuts, Trim \& Panel Clips, Palnut PushOns, \& Nut/Bolt Assemblies

Clevis Pins, Lanyards,
\& Helical Spring Lock Washers

SPIROL
A LINCOLN

Grease Fittings, Grease Guns, Lubrication \& Fluid Handling

Coiled Spring Pins,
Slotted Spring Pins, Spacers, \& Thrust Washers
\& Management Systems

Threaded Inserts, Studs, Rivets, \& Tools

DISC-LOCK

Single-Use, Heavy Duty,
Engineered Self-Locking Washers
\& Safety Wheel Nuts
(RROTOR CLIP
() Shakeproof group

ClB HEAD - IMPERIAL

DESCRIPTION

Gib head keys are tapered machine keys used on power transmission keyed shafts to hold pulleys and gears tightly on the shaft. The added feature of a head provides for easy removal.

HOW TO IDENTIFY

1. Verify tapered key with gib head design.
2. Measure width (B).
3. Measure length (D).
4. Find the part number in the chart below.

PREFIX MATERIAL/FINISH
GIB $=$ CARBON STEEL, PLAIN*
Material/finish combinations may not be available in all sizes.

Tapers are expressed in terms of rise over run. Imperial taper is 1:96.

$\quad 1250$			
(B) Width			

, $1875_{\text {(B) Width }}^{\prime \prime}$	

$\quad 2500^{\prime \prime}$	
(B) Width	

ITEM NUMBER	(D) LENGTH
GIB-0250-3500	$3.5000^{\prime \prime}(3-1 / 2)$
GIB-0250-4000	$4.0000^{\prime \prime}(4)$
GIB-0250-4500	$4.5000^{\prime \prime}(4-1 / 2)$
GIB-0250-5000	$5.0000^{\prime \prime}(5)$
GIB-0250-5500	$5.5000^{\prime \prime}(5-1 / 2)$
GIB-0250-6000	$6.0000^{\prime \prime}(6)$

.3125" (5/16)
 (B) Width

(F) Effective Height: . $3125^{\prime \prime}$ (5/16)
(C) Overall Height: .5000" (1/2) (GL) Gage Length: .3125" (5/16)

GIB-0312-0750	.7500" (3/4)
GIB-0312-1000	$1.0000^{\prime \prime}(1)$
GIB-0312-1250	$1.2500^{\prime \prime}(1-1 / 4)$
GIB-0312-1500	$1.5000^{\prime \prime}(1-1 / 2)$
GIB-0312-1937	$1.9375^{\prime \prime}(1-15 / 16)$
GIB-0312-2000	$2.0000^{\prime \prime}(2)$
GIB-0312-2500	$2.5000^{\prime \prime}(2-1 / 2)$
GIB-0312-3000	$3.0000^{\prime \prime}(3)$
GIB-0312-3500	$3.5000^{\prime \prime}(3-1 / 2)$
GIB-0312-4000	$4.0000^{\prime \prime}(4)$
GIB-0312-4500	$4.5000^{\prime \prime}(4-1 / 2)$
GIB-0312-5000	$5.0000^{\prime \prime}(5)$

ITEM NUMBER	(D) LENGTH
GIB-0312-5500	$5.5000^{\prime \prime}(5-1 / 2)$
GIB-0312-6000	$6.0000^{\prime \prime}(6)$
GIB-0312-6500	$6.5000^{\prime \prime}(6-1 / 2)$
GIB-0312-7000	$7.0000^{\prime \prime}(7)$

ITEM NUMBER	(D) LENGTH
GIB-0437-8500	$8.50000^{\prime \prime}(8-1 / 2)$
GIB-0437-9000	9.0000 " (9)
GIB-0437-9500	9.5000 " $(9-1 / 2)$
GIB-0437-10000	$10.0000^{\prime \prime}(10)$

$.5000^{\prime \prime}$			
(B) Width			

(F) Effective Height: .4375" (7/16)
(C) Overall Height: .7500" (3/4) (GL) Gage Length: . $4375^{\prime \prime}$ (7/16)

GIB-0437-1000	$1.0000^{\prime \prime}(1)$
GIB-0437-1500	$1.5000^{\prime \prime}(1-1 / 2)$
GIB-0437-2000	$2.0000^{\prime \prime}(2)$
GIB-0437-2500	$2.5000^{\prime \prime}(2-1 / 2)$
GIB-0437-3000	$3.0000^{\prime \prime}(3)$
GIB-0437-3500	$3.5000^{\prime \prime}(3-1 / 2)$
GIB-0437-4000	$4.0000^{\prime \prime}(4)$
GIB-0437-4500	$4.5000^{\prime \prime}(4-1 / 2)$
GIB-0437-5000	$5.0000^{\prime \prime}(5)$
GIB-0437-5500	$5.5000^{\prime \prime}(5-1 / 2)$
GIB-0437-6000	$6.0000^{\prime \prime}(6)$
GIB-0437-6500	$6.5000^{\prime \prime}(6-1 / 2)$
GIB-0437-7000	$7.0000^{\prime \prime}(7)$
GIB-0437-7500	$7.5000^{\prime \prime}(7-1 / 2)$
GIB-0437-8000	$8.0000^{\prime \prime}(8)$

.5625" (9/16)
 (B) Width

(F) Effective Height: .5625" (9/16)
(C) Overall Height: .8750" (7/8) (GL) Gage Length: . $5625^{\prime \prime}(9 / 16)$

ITEM NUMEER	(D) LENGTH
$.5625^{\prime \prime}(9 / 16)$ (B) Width	
(F) Effective Height: .5625" (9/16) (C) Overall Height: .8750" (7/8) (GL) Gage Length: .5625" (9/16)	
GIB-0562-1000	1.0000" (1)
GIB-0562-1500	1.5000" (1-1/2)
GIB-0562-2000	$2.0000{ }^{\prime \prime}(2)$
GIB-0562-2500	2.5000" (2-1/2)
GIB-0562-3000	3.0000 " (3)
GIB-0562-3500	3.5000" (3-1/2)
GIB-0562-4000	4.0000 " (4)
GIB-0562-4500	4.5000" (4-1/2)
GIB-0562-5000	5.0000" (5)
GIB-0562-5500	5.5000" (5-1/2)
GIB-0562-6000	6.0000 " (6)
GIB-0562-6500	6.5000" (6-1/2)
GIB-0562-7000	7.0000 " (7)
GIB-0562-7500	7.5000" (7-1/2)
GIB-0562-8000	8.0000" (8)
GIB-0562-8500	$8.5000{ }^{\prime \prime}(8-1 / 2)$
GIB-0562-9000	9.0000 " (9)
GIB-0562-9500	$9.5000{ }^{\prime \prime}(9-1 / 2)$
GIB-0562-10000	10.0000 " (10)
GIB-0562-10500	10.5000" (10-1/2)
GIB-0562-11000	11.0000" (11)
GIB-0562-11500	11.5000" (11-1/2)
GIB-0562-12000	12.0000 " (12)

ZINC PLATING AND OTHER FINISHES AVAILABLE FOR ALL PARTS SEE PAGE 16

ClB HEAD - IMPERIAL

PREFIX MATERIAL/FINISH

GIB
$=$ CARBON STEEL, PLAIN*
Material/finish combinations may not be available in all sizes.

$.6250^{\prime \prime}(5 / 8)$ (B) Width	
(F) Effective Height: . 6250" (5/8) (C) Overall Height: 1.0000 " (1) (GL) Gage Length: .6250" (5/8)	
GIB-0625-1500	1.5000" (1-1/2)
GIB-0625-2000	2.0000 " (2)
GIB-0625-2500	2.5000" (2-1/2)
GIB-0625-2750	2.7500 " (2-3/4)
GIB-0625-2937	2.9375" (2-15/16)
GIB-0625-3000	3.0000 " (3)
GIB-0625-3500	3.5000 " (3-1/2)
GIB-0625-4000	4.0000 " (4)
GIB-0625-4500	4.5000" (4-1/2)
GIB-0625-5000	5.0000 " (5)
GIB-0625-5500	5.5000 " (5-1/2)
GIB-0625-6000	6.0000 " (6)
GIB-0625-6500	6.5000 " (6-1/2)
GIB-0625-7000	7.0000 " (7)
GIB-0625-7500	7.5000" (7-1/2)
GIB-0625-8000	$8.0000{ }^{\prime \prime}$ (8)
GIB-0625-8500	8.5000 " (8-1/2)
GIB-0625-9000	9.0000 " (9)
GIB-0625-9500	9.5000 " (9-1/2)
GIB-0625-10000	10.0000 " (10)
GIB-0625-10500	10.5000" (10-1/2)
GIB-0625-11000	11.0000 " (11)
GIB-0625-11500	11.5000" (11-1/2)
GIB-0625-12000	12.0000 " (12)

$7500_{\text {(B) Width }}(3 / 4)$	
(F) Effective Height: .7500" (3/4) (C) Overall Height: $1.1250^{\prime \prime}(1-1 / 8)$ (GL) Gage Length: . $.7500^{\prime \prime}(3 / 4)$	
GIB-0750-1500	$1.5000^{\prime \prime}(1-1 / 2)$
GIB-0750-2000	$2.0000^{\prime \prime}(2)$
GIB-0750-2500	$2.5000^{\prime \prime}(2-1 / 2)$
GIB-0750-3000	$3.0000^{\prime \prime}(3)$
GIB-0750-3500	$3.5000^{\prime \prime}(3-1 / 2)$
GIB-0750-3750	$3.7500^{\prime \prime}(3-3 / 4)$
GIB-0750-4000	$4.0000^{\prime \prime}(4)$
GIB-0750-4500	$4.5000^{\prime \prime}(4-1 / 2)$
GIB-0750-5000	$5.0000^{\prime \prime}(5)$

ITEM NUMBER	(D) LENGTH
GIB-0750-5500	$5.5000^{\prime \prime}(5-1 / 2)$
GIB-0750-6000	$6.0000^{\prime \prime}(6)$
GIB-0750-6500	$6.5000^{\prime \prime}(6-1 / 2)$
GIB-0750-7000	$7.0000^{\prime \prime}(7)$
GIB-0750-7500	$7.5000^{\prime \prime}(7-1 / 2)$
GIB-0750-7750	$7.7500^{\prime \prime}(7-3 / 4)$
GIB-0750-8000	$8.0000^{\prime \prime}(8)$
GIB-0750-8500	$8.5000^{\prime \prime}(8-1 / 2)$
GIB-0750-9000	$9.0000^{\prime \prime}(9)$
GIB-0750-9500	$9.5000^{\prime \prime}(9-1 / 2)$
GIB-0750-10000	$10.0000^{\prime \prime}(10)$
GIB-0750-10500	$10.5000^{\prime \prime}(10-1 / 2)$
GIB-0750-11000	$11.0000^{\prime \prime}(11)$
GIB-0750-11500	$11.5000^{\prime \prime}(11-1 / 2)$
GIB-0750-12000	$12.0000^{\prime \prime}(12)$

.8750" (7/8)
 (B) Width

(F) Effective Height: .8750" (7/8)
(C) Overall Height: $1.2500^{\prime \prime}(1-1 / 4)$
(GL) Gage Length: .8750" (7/8)

GIB-0875-2000	$2.0000^{\prime \prime}(2)$
GIB-0875-2500	$2.5000^{\prime \prime}(2-1 / 2)$
GIB-0875-3000	$3.0000^{\prime \prime}(3)$
GIB-0875-3500	$3.5000^{\prime \prime}(3-1 / 2)$
GIB-0875-4000	$4.0000^{\prime \prime}(4)$
GIB-0875-4500	$4.5000^{\prime \prime}(4-1 / 2)$
GIB-0875-5000	$5.0000^{\prime \prime}(5)$
GIB-0875-5500	$5.5000^{\prime \prime}(5-1 / 2)$
GIB-0875-6000	$6.0000^{\prime \prime}(6)$
GIB-0875-6500	$6.5000^{\prime \prime}(6-1 / 2)$
GIB-0875-7000	$7.0000^{\prime \prime}(7)$
GIB-0875-7500	$7.5000^{\prime \prime}(7-1 / 2)$
GIB-0875-8000	$8.0000^{\prime \prime}(8)$
GIB-0875-8500	$8.5000^{\prime \prime}(8-1 / 2)$
GIB-0875-9000	$9.0000^{\prime \prime}(9)$
GIB-0875-9500	$9.5000^{\prime \prime}(9-1 / 2)$
GIB-0875-10000	$10.0000^{\prime \prime}(10)$
GIB-0875-10500	$10.5000^{\prime \prime}(10-1 / 2)$
GIB-0875-11000	$11.0000^{\prime \prime}(11)$
GIB-0875-11500	$11.5000^{\prime \prime}(11-1 / 2)$
GIB-0875-12000	$12.0000^{\prime \prime}(12)$

ITEM NUMBER	

$1.1250_{\text {(8) }}$ " $(1-1 / 8)$
(F) Effective Height: 1.1250" (1-1/8) (C) Overall Height: 1.7500 " (1-3/4) (GL) Gage Length: 1.1250 " (1-1/8)

GIB-1125-2500	$2.5000^{\prime \prime}(2-1 / 2)$
GIB-1125-3000	$3.0000^{\prime \prime}(3)$
GIB-1125-3500	$3.5000^{\prime \prime}(3-1 / 2)$
GIB-1125-4000	$4.0000^{\prime \prime}(4)$
GIB-1125-4500	$4.5000^{\prime \prime}(4-1 / 2)$
GIB-1125-5000	$5.0000^{\prime \prime}(5)$
GIB-1125-5500	$5.5000^{\prime \prime}(5-1 / 2)$
GIB-1125-6000	$6.0000^{\prime \prime}(6)$
GIB-1125-6500	$6.5000^{\prime \prime}(6-1 / 2)$
GIB-1125-7000	$7.0000^{\prime \prime}(7)$
GIB-1125-7500	$7.5000^{\prime \prime}(7-1 / 2)$

C|B M|AAD - IMPERIAL

ITEM NUMBER	(D) LENGTH
GIB-1125-8000	$8.0000^{\prime \prime}(8)$
GIB-1125-8500	$8.5000^{\prime \prime}(8-1 / 2)$
GIB-1125-9000	$9.0000^{\prime \prime}(9)$
GIB-1125-9500	$9.5000^{\prime \prime}(9-1 / 2)$
GIB-1125-10000	$10.0000^{\prime \prime}(10)$
GIB-1125-10500	$10.5000^{\prime \prime}(10-1 / 2)$
GIB-1125-11000	$11.0000^{\prime \prime}(11)$
GIB-1125-11500	$11.5000^{\prime \prime}(11-1 / 2)$
GIB-1125-12000	$12.0000^{\prime \prime}(12)$

$1.2500^{\text {"I }}(1-1 / 4)$

(F) Effective Height: 1.2500" (1-1/4)
(C) Overall Height: 1.8750" (1-7/8)
(GL) Gage Length: 1.2500 " (1-1/4)
GIB-1250-3000 3.0000" (3)
GIB-1250-3500 3.5000" (3-1/2)
GIB-1250-4000
4.0000" (4)

GIB-1250-4500
GIB-1250-5000
GIB-1250-5500
GIB-1250-6000
GIB-1250-6500
GIB-1250-7000
GIB-1250-7500
GIB-1250-8000
GIB-1250-8500
GIB-1250-9000
GIB-1250-9500 GIB-1250-10000 GIB-1250-10500 GIB-1250-11000 GIB-1250-11500
GIB-1250-12000
GIB-1250-14000

ITEM NUMBER	(D) LENGTH
GIB-1375-8000	$8.0000^{\prime \prime}(8)$
GIB-1375-8500	$8.5000^{\prime \prime}(8-1 / 2)$
GIB-1375-9000	$9.0000^{\prime \prime}(9)$
GIB-1375-9500	$9.5000^{\prime \prime}(9-1 / 2)$
GIB-1375-10000	$10.0000^{\prime \prime}(10)$
GIB-1375-10500	$10.5000^{\prime \prime}(10-1 / 2)$
GIB-1375-11000	$11.0000^{\prime \prime}(11)$
GIB-1375-11500	$11.5000^{\prime \prime}(11-1 / 2)$
GIB-1375-12000	$12.0000^{\prime \prime}(12)$

$1.5000^{\text {"1 }}(1-1 / 2)$

(F) Effective Height: 1.5000" (1-1/2)
(C) Overall Height: 2.5000 " (2-1/2)
(GL) Gage Length: 1.5000 " (1-1/2)
GIB-1500-3500 3.5000" (3-1/2)
GIB-1500-4000 4.0000" (4)
GIB-1500-4500 4.5000" (4-1/2)
GIB-1500-5000 5.0000" (5)

GIB-1500-5500 5.5000" (5-1/2)
GIB-1500-6000 6.0000" (6)
GIB-1500-6500 6.5000" (6-1/2)
GIB-1500-7000
GIB-1500-7500
GIB-1500-8000
GIB-1500-8500
GIB-1500-9000
GIB-1500-9500
GIB-1500-10000
GIB-1500-10500 7.0000 " (7) 7.5000" (7-1/2) $8.0000^{\prime \prime}$ (8) 8.5000" (8-1/2) 9.0000" (9) 9.5000" (9-1/2) 10.0000 " (10) 10.5000" (10-1/2)

GIB-1500-11000 11.0000" (11) GIB-1500-11500 11.5000" (11-1/2) GIB-1500-12000 12.0000" (12)

$1.6250^{\text {" }}$ (1-5/8) (B) Width

(F) Effective Height: 1.6250" (1-5/8)
(C) Overall Height: 2.5000 " (2-1/2)
(GL) Gage Length: 1.6250 " ($1-5 / 8$)
GIB-1625-3500 3.5000" (3-1/2)
GIB-1625-4000 4.0000" (4)
GIB-1625-4500 4.5000" (4-1/2)
GIB-1625-5000 5.0000" (5)
GIB-1625-5500 5.5000" (5-1/2)
GIB-1625-6000 6.0000" (6)
GIB-1625-6500 6.5000" (6-1/2)
GIB-1625-7000 7.0000" (7)
GIB-1625-7500 7.5000" (7-1/2)
GIB-1625-8000 8.0000" (8)
GIB-1625-8500 8.5000" (8-1/2)
GIB-1625-9000 9.0000" (9)

ITEM NUMBER	(D) LENGTH
GIB-1625-9500	9.5000" (9-1/2)
GIB-1625-10000	$10.0000^{\prime \prime}(10)$
GIB-1625-10500	$10.5000^{\prime \prime}(10-1 / 2)$
GIB-1625-11000	$11.0000^{\prime \prime}(11)$
GIB-1625-11500	$11.5000^{\prime \prime}(11-1 / 2)$
GIB-1625-12000	$12.0000^{\prime \prime}(12)$

$1.7500^{\text {" }}(1-3 / 4)$
 (B) Width

(F) Effective Height: 1.7500 " (1-3/4)
(C) Overall Height: 2.7500 " (2-3/4)
(GL) Gage Length: 1.7500 " (1-3/4)

GIB-1750-4000	$4.0000^{\prime \prime}(4)$
GIB-1750-4500	$4.5000^{\prime \prime}(4-1 / 2)$
GIB-1750-5000	$5.0000^{\prime \prime}(5)$
GIB-1750-5500	$5.5000^{\prime \prime}(5-1 / 2)$
GIB-1750-6000	$6.0000^{\prime \prime}(6)$
GIB-1750-6500	$6.5000^{\prime \prime}(6-1 / 2)$
GIB-1750-7000	$7.0000^{\prime \prime}(7)$
GIB-1750-7500	$7.5000^{\prime \prime}(7-1 / 2)$
GIB-1750-8000	$8.0000^{\prime \prime}(8)$
GIB-1750-8500	$8.5000^{\prime \prime}(8-1 / 2)$
GIB-1750-9000	$9.0000^{\prime \prime}(9)$
GIB-1750-9500	$9.5000^{\prime \prime}(9-1 / 2)$
GIB-1750-10000	$10.0000^{\prime \prime}(10)$
GIB-1750-10500	$10.5000^{\prime \prime}(10-1 / 2)$
GIB-1750-11000	$11.0000^{\prime \prime}(11)$
GIB-1750-11500	$11.5000^{\prime \prime}(11-1 / 2)$
GIB-1750-12000	$12.0000^{\prime \prime}(12)$

$2.0000^{\prime \prime}$ (2)
 (B) Width

(F) Effective Height: 2.0000" (2) (C) Overall Height: $3.0000^{\prime \prime}$ (3) (GL) Gage Length: 2.0000 " (2)	
GIB-2000-4500	4.5000" (4-1/2)
GIB-2000-5000	5.0000" (5)
GIB-2000-5500	5.5000" (5-1/2)
GIB-2000-6000	6.0000 " (6)
GIB-2000-6500	6.5000" (6-1/2)
GIB-2000-7000	7.0000 " (7)
GIB-2000-7500	7.5000" (7-1/2)
GIB-2000-8000	8.0000" (8)
GIB-2000-8500	8.5000" (8-1/2)
GIB-2000-9000	9.0000" (9)
GIB-2000-9500	9.5000" (9-1/2)
GIB-2000-10000	10.0000" (10)
GIB-2000-10500	10.5000" (10-1/2)
GIB-2000-11000	11.0000 " (11)
GIB-2000-11500	11.5000" (11-1/2)
GIB-2000-12000	12.0000 " (12)

(G)
(GL) Gage Length: 2.0000" (2)

HUYETT.COM • 785-392-3017

CIB HEAD - METRIC

DIN 6887

DESCRIPTION

Gib head keys are tapered machine keys used on power transmission keyed shafts to hold pulleys and gears tightly on the shaft. The added feature of a head provides for easy removal.

HOW TO IDENTIFY

1. Verify tapered key with gib head design.
2. Measure width (B).
3. Measure effective height (F).
4. Measure length (D).
5. Find the part number in the chart below.

MATERIAL/FINISH

GIBM = CARBON STEEL, PLAIN*
Material/finish combinations may not be available in all sizes.

ITEM NUMBER	(D)	(F)
LENGTH	EFFECTIVE	
HEIGHT		

4.00 mm
 (B) Width

GIBM-0404-030
GIBM-0404-040
GIBM-0404-050
GIBM-0404-060 GIBM-0404-070 GIBM-0404-080

5.00 MM (B) Width		(C) Overall Height: 8.00 mm
GIBM-0505-030	30.00 mm	5.00 mm
GIBM-0505-040	40.00 mm	5.00 mm
GIBM-0505-050	50.00 mm	5.00 mm
GIBM-0505-060	60.00 mm	5.00 mm
GIBM-0505-070	70.00 mm	5.00 mm
GIBM-0505-080	80.00 mm	5.00 mm

6.00 min (B) Width	(C) Overall Height: 10.00 mm	
GIBM-0606-030	30.00 mm	6.00 mm
GIBM-0606-040	40.00 mm	6.00 mm

Tapers are expressed in terms of rise over run. Metric taper is 1:100.

| $\begin{array}{c}\text { (D) } \\ \text { NUMBER }\end{array}$ | $\begin{array}{c}\text { (F) } \\ \text { LENGTH }\end{array}$ |
| :--- | :--- | :--- |
| EFFECTIVE | |
| HEIGHT | |$)$

8.00 (B) Width		(C) Overall Height: 11.00 mm	
GIBM-0805-030	30.00 mm	5.00 mm	
GIBM-0805-040	40.00 mm	5.00 mm	
GIBM-0805-050	50.00 mm	5.00 mm	
GIBM-0805-060	60.00 mm	5.00 mm	
GIBM-0805-070	70.00 mm	5.00 mm	
GIBM-0805-080	80.00 mm	5.00 mm	
GIBM-0805-090	90.00 mm	5.00 mm	
GIBM-0805-100	100.00 mm	5.00 mm	
GIBM-0807-030	30.00 mm	7.00 mm	
GIBM-0807-040	40.00 mm	7.00 mm	
GIBM-0807-050	50.00 mm	7.00 mm	
GIBM-0807-060	60.00 mm	7.00 mm	
GIBM-0807-070	70.00 mm	7.00 mm	
GIBM-0807-080	80.00 mm	7.00 mm	
GIBM-0807-090	90.00 mm	7.00 mm	
GIBM-0807-100	100.00 mm	7.00 mm	

	(D)	(F)
ITEM	LENGTH	EFFECTIVE
NUMBER		HEIGHT

10,0
(B) Width

12.00 mm (B) Width

GIBM-1206-040
GIBM-1206-050 GIBM-1206-060 GIBM-1206-070 GIBM-1206-080 GIBM-1206-090 GIBM-1206-100 GIBM-1206-120 GIBM-1208-040 GIBM-1208-050 GIBM-1208-060 GIBM-1208-070 GIBM-1208-080 GIBM-1208-090 GIBM-1208-100 GIBM-1208-120

(C) Overall Height: 12.00 mm	
40.00 mm	6.00 mm
50.00 mm	6.00 mm
60.00 mm	6.00 mm
70.00 mm	6.00 mm
80.00 mm	6.00 mm
90.00 mm	6.00 mm
100.00 mm	6.00 mm
40.00 mm	8.00 mm
50.00 mm	8.00 mm
60.00 mm	8.00 mm
70.00 mm	8.00 mm
80.00 mm	8.00 mm
90.00 mm	8.00 mm
100.00 mm	8.00 mm
120.00 mm	8.00 mm

(C) Overall Height: 12.00 mm

4.00 (B) Width		(C) Overall Height: 14.00 mm
GIBM-1406-040	40.00 mm	6.00 mm
GIBM-1406-050	50.00 mm	6.00 mm
GIBM-1406-060	60.00 mm	6.00 mm
GIBM-1406-070	70.00 mm	6.00 mm
GIBM-1406-080	80.00 mm	6.00 mm
GIBM-1406-090	90.00 mm	6.00 mm
GIBM-1406-100	100.00 mm	6.00 mm
GIBM-1406-120	120.00 mm	6.00 mm
GIBM-1406-140	140.00 mm	6.00 mm
GIBM-1406-160	160.00 mm	6.00 mm
GIBM-1409-040	40.00 mm	9.00 mm

ITEM NUMBER	(D) LENGTH	
GIBM-1409-050	50.00 mm	(F) EFFECTIVE HEIGHT
GIBM-1409-060	60.00 mm	9.00 mm
GIBM-1409-070	70.00 mm	9.00 mm
GIBM-1409-080	80.00 mm	9.00 mm
GIBM-1409-090	90.00 mm	9.00 mm
GIBM-1409-100	100.00 mm	9.00 mm
GIBM-1409-120	120.00 mm	9.00 mm
GIBM-1409-140	140.00 mm	9.00 mm
GIBM-1409-160	160.00 mm	9.00 mm

(B) Width (B) Wid	(C) Overall Height: 16.00 mm	
GIBM-1607-040	40.00 mm	7.00 mm
GIBM-1607-050	50.00 mm	7.00 mm
GIBM-1607-060	60.00 mm	7.00 mm
GIBM-1607-070	70.00 mm	7.00 mm
GIBM-1607-080	80.00 mm	7.00 mm
GIBM-1607-090	90.00 mm	7.00 mm
GIBM-1607-100	100.00 mm	7.00 mm
GIBM-1607-120	120.00 mm	7.00 mm
GIBM-1607-140	140.00 mm	7.00 mm
GIBM-1607-160	160.00 mm	7.00 mm
GIBM-1607-180	180.00 mm	7.00 mm
GIBM-1610-040	40.00 mm	10.00 mm
GIBM-1610-050	50.00 mm	10.00 mm
GIBM-1610-060	60.00 mm	10.00 mm
GIBM-1610-070	70.00 mm	10.00 mm
GIBM-1610-080	80.00 mm	10.00 mm
GIBM-1610-090	90.00 mm	10.00 mm
GIBM-1610-100	100.00 mm	10.00 mm
GIBM-1610-120	120.00 mm	10.00 mm
GIBM-1610-140	140.00 mm	10.00 mm
GIBM-1610-160	160.00 mm	10.00 mm
GIBM-1610-180	180.00 mm	10.00 mm
GIBM-1610-200	200.00 mm	10.00 mm

ZINC PLATING AND OTHER FINISHES AVAILABLE FOR ALL PARTS

```
SEE PAGE }1
```


PREFIX MATERIAL/FINISH

GIBM = CARBON STEEL, PLAIN* Material/finish combinations may not be available in all sizes.

	(D)	(F)
ITEM		
NUMBER	LENGTH	EFFECTIVE
HEIGHT		

18.00 mm

 (B) WidthGIBM-1807-060 GIBM-1807-070 GIBM-1807-080 GIBM-1807-090 GIBM-1807-100 GIBM-1807-120 GIBM-1807-140 GIBM-1807-160 GIBM-1807-180 GIBM-1807-200 GIBM-1807-220 GIBM-1811-060 GIBM-1811-070 GIBM-1811-080 GIBM-1811-090 GIBM-1811-100 GIBM-1811-120 GIBM-1811-140 GIBM-1811-160 GIBM-1811-180 GIBM-1811-200 GIBM-1811-220
20.00 mm (B) Width

GIBM-2008-060 GIBM-2008-070 GIBM-2008-080 GIBM-2008-090 GIBM-2008-100 GIBM-2008-120 GIBM-2008-140 GIBM-2008-160 GIBM-2008-180 GIBM-2008-200 GIBM-2008-220 GIBM-2008-240 GIBM-2012-060 GIBM-2012-070 GIBM-2012-080 GIBM-2012-090
(C) Overall Height: 18.00 mm

60.00 mm	7.00 mm
70.00 mm	7.00 mm
80.00 mm	7.00 mm
90.00 mm	7.00 mm
100.00 mm	7.00 mm
120.00 mm	7.00 mm
140.00 mm	7.00 mm
160.00 mm	7.00 mm
180.00 mm	7.00 mm
200.00 mm	7.00 mm
220.00 mm	7.00 mm
60.00 mm	11.00 mm
70.00 mm	11.00 mm
80.00 mm	11.00 mm
90.00 mm	11.00 mm
100.00 mm	11.00 mm
120.00 mm	11.00 mm
140.00 mm	11.00 mm
160.00 mm	11.00 mm
180.00 mm	11.00 mm
200.00 mm	11.00 mm
220.00 mm	11.00 mm

(C) Overall Height: 20.00 mm

60.00 mm	8.00 mm
70.00 mm	8.00 mm
80.00 mm	8.00 mm
90.00 mm	8.00 mm
100.00 mm	8.00 mm
120.00 mm	8.00 mm
140.00 mm	8.00 mm
160.00 mm	8.00 mm
180.00 mm	8.00 mm
200.00 mm	8.00 mm
220.00 mm	8.00 mm
240.00 mm	8.00 mm
60.00 mm	12.00 mm
70.00 mm	12.00 mm
80.00 mm	12.00 mm
90.00 mm	12.00 mm

ITEM NUMBER	(D) LENGTH	
LFIBM-2012-100	100.00 mm	() EFFECTIVE HEIGHT
GIBM	12.00 mm	
GIBM-2012-120	120.00 mm	12.00 mm
GIBM-2012-140	140.00 mm	12.00 mm
GIBM-2012-160	160.00 mm	12.00 mm
GIBM-2012-180	180.00 mm	12.00 mm
GIBM-2012-200	200.00 mm	12.00 mm
GIBM-2012-220	220.00 mm	12.00 mm
GIBM-2012-240	240.00 mm	12.00 mm

220 (B) Width		(C) Overall Height: 22.00 mm	
GIBM-2209-080	80.00 mm	9.00 mm	
GIBM-2209-090	90.00 mm	9.00 mm	
GIBM-2209-100	100.00 mm	9.00 mm	
GIBM-2209-120	120.00 mm	9.00 mm	
GIBM-2209-140	140.00 mm	9.00 mm	
GIBM-2209-160	160.00 mm	9.00 mm	
GIBM-2209-180	180.00 mm	9.00 mm	
GIBM-2209-200	200.00 mm	9.00 mm	
GIBM-2209-220	220.00 mm	9.00 mm	
GIBM-2209-240	240.00 mm	9.00 mm	
GIBM-2209-260	260.00 mm	9.00 mm	
GIBM-2209-280	280.00 mm	9.00 mm	
GIBM-2209-300	300.00 mm	9.00 mm	
GIBM-2214-080	80.00 mm	14.00 mm	
GIBM-2214-090	90.00 mm	14.00 mm	
GIBM-2214-100	100.00 mm	14.00 mm	
GIBM-2214-120	120.00 mm	14.00 mm	
GIBM-2214-140	140.00 mm	14.00 mm	
GIBM-2214-160	160.00 mm	14.00 mm	
GIBM-2214-180	180.00 mm	14.00 mm	
GIBM-2214-200	200.00 mm	14.00 mm	
GIBM-2214-220	220.00 mm	14.00 mm	
GIBM-2214-240	240.00 mm	14.00 mm	
GIBM-2214-260	260.00 mm	14.00 mm	
GIBM-2214-280	280.00 mm	14.00 mm	
GIBM-2214-300	300.00 mm	14.00 mm	

25.0. (B) Width		(C) Overall Height: 22.00 mm	
GIBM-2509-080	80.00 mm	9.00 mm	
GIBM-2509-090	90.00 mm	9.00 mm	
GIBM-2509-100	100.00 mm	9.00 mm	
GIBM-2509-120	120.00 mm	9.00 mm	

ITEM NUMBER	(D) LENGTH	
GIBM-2509-140	140.00 mm	(FFFECTVE HEIGHT
GIBM-2509-160	160.00 mm	9.00 mm
GIBM-2509-180	180.00 mm	9.00 mm
GIBM-2509-200	200.00 mm	
GIBM-2509-220	220.00 mm	9.00 mm
GIBM-2509-240	240.00 mm	9.00 mm
GIBM-2509-260	260.00 mm	9.00 mm
GIBM-2509-280	280.00 mm	9.00 mm
GIBM-2509-300	300.00 mm	9.00 mm
GIBM-2514-080	80.00 mm	9.00 mm
GIBM-2514-090	90.00 mm	14.00 mm
GIBM-2514-100	100.00 mm	14.00 mm
GIBM-2514-120	120.00 mm	14.00 mm
GIBM-2514-140	140.00 mm	14.00 mm
GIBM-2514-160	160.00 mm	14.00 mm
GIBM-2514-180	180.00 mm	14.00 mm
GIBM-2514-200	200.00 mm	14.00 mm
GIBM-2514-220	220.00 mm	14.00 mm
GIBM-2514-240	240.00 mm	14.00 mm
GIBM-2514-260	260.00 mm	14.00 mm
GIBM-2514-280	280.00 mm	14.00 mm
GIBM-2514-300	300.00 mm	14.00 mm
		14.00 mm

28.00 mm (B) Width

GIBM-2810-090 GIBM-2810-100 GIBM-2810-120 GIBM-2810-140 GIBM-2810-160 GIBM-2810-180 GIBM-2810-200 GIBM-2810-220 GIBM-2810-240 GIBM-2810-260 GIBM-2810-280 GIBM-2810-300 GIBM-2810-350 GIBM-2810-400 GIBM-2816-090 GIBM-2816-100 GIBM-2816-120 GIBM-2816-140 GIBM-2816-160 GIBM-2816-180 GIBM-2816-200 GIBM-2816-220 GIBM-2816-240 GIBM-2816-260
GIBM-2816-280
(C) Overall Height: 25.00 mm

90.00 mm	10.00 mm
100.00 mm	10.00 mm
120.00 mm	10.00 mm
140.00 mm	10.00 mm
160.00 mm	10.00 mm
180.00 mm	10.00 mm
200.00 mm	10.00 mm
220.00 mm	10.00 mm
240.00 mm	10.00 mm
260.00 mm	10.00 mm
280.00 mm	10.00 mm
300.00 mm	10.00 mm
350.00 mm	10.00 mm
400.00 mm	10.00 mm
90.00 mm	16.00 mm
100.00 mm	16.00 mm
120.00 mm	16.00 mm
140.00 mm	16.00 mm
160.00 mm	16.00 mm
180.00 mm	16.00 mm
200.00 mm	16.00 mm
220.00 mm	16.00 mm
240.00 mm	16.00 mm
260.00 mm	16.00 mm
280.00 mm	16.00 mm

$\left.\begin{array}{|c|c|c|}\hline \text { ITEM } \\ \text { NUMBER }\end{array} \quad \begin{array}{c}\text { (D) } \\ \text { LENGTH }\end{array} \quad \begin{array}{c}\text { (F) } \\ \text { EFFECTIVE } \\ \text { HEIGHT }\end{array}\right)$

32.00 mm (B) Width	(C) Overall Height: 28.00 mm	
GIBM-3211-100	100.00 mm	11.00 mm
GIBM-3211-120	120.00 mm	11.00 mm
GIBM-3211-140	140.00 mm	11.00 mm
GIBM-3211-160	160.00 mm	11.00 mm
GIBM-3211-180	180.00 mm	11.00 mm
GIBM-3211-200	200.00 mm	11.00 mm
GIBM-3211-220	220.00 mm	11.00 mm
GIBM-3211-240	240.00 mm	11.00 mm
GIBM-3211-260	260.00 mm	11.00 mm
GIBM-3211-280	280.00 mm	11.00 mm
GIBM-3211-300	300.00 mm	11.00 mm
GIBM-3211-350	350.00 mm	11.00 mm
GIBM-3211-400	400.00 mm	11.00 mm
GIBM-3218-100	100.00 mm	18.00 mm
GIBM-3218-120	120.00 mm	18.00 mm
GIBM-3218-140	140.00 mm	18.00 mm
GIBM-3218-160	160.00 mm	18.00 mm
GIBM-3218-180	180.00 mm	18.00 mm
GIBM-3218-200	200.00 mm	18.00 mm
GIBM-3218-220	220.00 mm	18.00 mm
GIBM-3218-240	240.00 mm	18.00 mm
GIBM-3218-260	260.00 mm	18.00 mm
GIBM-3218-280	280.00 mm	18.00 mm
GIBM-3218-300	300.00 mm	18.00 mm
GIBM-3218-350	350.00 mm	18.00 mm
GIBM-3218-400	400.00 mm	18.00 mm

(B) Width				(C) Overall Height: 32.00 mm
GIBM-3620-120	120.00 mm	20.00 mm		
GIBM-3620-140	140.00 mm	20.00 mm		
GIBM-3620-160	160.00 mm	20.00 mm		
GIBM-3620-180	180.00 mm	20.00 mm		
GIBM-3620-200	200.00 mm	20.00 mm		
GIBM-3620-220	220.00 mm	20.00 mm		
GIBM-3620-240	240.00 mm	20.00 mm		
GIBM-3620-260	260.00 mm	20.00 mm		
GIBM-3620-280	280.00 mm	20.00 mm		
GIBM-3620-300	300.00 mm	20.00 mm		
GIBM-3620-350	350.00 mm	20.00 mm		
GIBM-3620-400	400.00 mm	20.00 mm		
GIBM-3620-450	450.00 mm	20.00 mm		

WOODRUFF - IMPERIAL

DESCRIPTION

Woodruff keys are commonly found in machine tools and automotive applications. They are designed to be installed deep into a shaft and firmly embedded. As a result, they are less likely to slip out of the key way. Both round and flat bottom designs are standard and function equally. If a specific style is required, please contact our Sales Team.

PREFIX MATERIAL/FINISH
WKA = COLD FINISHED ALLOY STEEL, PLAIN*
WKC = COLD FINISHED STEEL PLAIN*
WKS $=3 \theta \theta$ SERIES STAINLESS STEEL, PLAIN
UKS $-\times \times \times-$ PAS $=3 \theta \theta$ SERIES STAINLESS
STEEL, PASSIVATED

HOW TO IDENTIFY

1. Verify half-moon shape.
2. Measure diameter (B).
3. Measure width (A).
4. Find the part number in the chart on the next page. Or, compare your part to the part silhouettes in the chart on the next page.

WKC $-\times \times \times-Z C=C O L D$ FINISHED STEEL, ZINC CLEAR TRIVALENT
WKC-XXX-ZY = COLD FINISHED STEEL, ZINC YELLOW TRIVALENT Material/finish combinations may not be available in all sizes.

WOODRUFF KEYS CAN BE PRODUCED IN MANY HEIGHT, WIDTH, AND LENGTH COMBINATIONS

WOODRUFF TOLERANCES								
MATERIAL		DIAMETER (B)		WIDTH (A)				
(Prefix)	(Material/Finish)	(Size Range)	(Tolerance)	(Size Range)	(Tolerance)			
WKA	Cold Finished Alloy Steel, Plain*	All Sizes	+0/.0100"	All Sizes	+0/-.0010"			
WKC	Cold Finished Steel, Plain*							
WKS	300 Series Stainless Steel, Plain	ZINC PLATING AND OTHER FINISHES AYAILABLE FOR ALL PARTS						
WKS-XXX-PAS	300 Series Stainless Steel, Passivated							
wKc-xxx-zc	Cold Finished Steel, Zinc Clear Trivalent	SEE PAGE 16						
wKc-xxx-zY	Cold Finished Steel, Zinc Yellow Trivalent							

UIDTH MEASUREMENTS

WOODRUFF - IMPERIAL

	1/4 ${ }^{\text {II }}$	$5 / 16^{\text {I }}$		3/8'			1/2"		
	\square								
ITEM NUMBER	PREFIX-201	PREFIX-206	PREFIX-207	PREFIX-211	PREFIX-212	PREFIX-213	PREFIX-001	PREFIX-002	PREFIX-003
(B) DIAMETER	.250" (1/4)	.313" (5/16)	.313" (5/16)	.375" (3/8)	.375" (3/8)	.375" (3/8)	.500" (1/2)	.500" (1/2)	.500" (1/2)
(A) WIDTH	.063" (1/16)	. 063 " (1/16)	.094" (3/32)	.063" (1/16)	.094" (3/32)	.125" (1/8)	.063" (1/16)	.094" (3/32)	.125" (1/8)

	$5 / 8^{\prime \prime}$				$3 / 4^{\prime \prime}$			
ITEM NUMBER	PREFIX-004	PREFIX-005	PREFIX-006	PREFIX-061	PREFIX-007	PREFIX-008	PREFIX-009	PREFIX-091
(B) DIAMETER	.625" (5/8)	.625" (5/8)	.625" (5/8)	.625" (5/8)	.750" (3/4)	.750" (3/4)	.750" (3/4)	.750" (3/4)
(A) WIDTH	.094" (3/32)	.125" (1/8)	.156" (5/32)	.188" (3/16)	.125" (1/8)	.156" (5/32)	.188" (3/16)	.250" (1/4)

Images are approximate actual size.

MILLING THE KEY WAY

A WOODRUFF OR HI-PRO KEY IS THEN INSERTED TO MATE THE SH,AFT TO THE ASSEMBLY

WOODRUFF - IMPERIAL

PREFIX

MATERIAL/FINISH

WKA
= COLD FINISHED ALLOY STEEL, PLAIN*
WKC = COLD FINISHED STEEL, PLAIN*
WKS $\quad=3 \theta \theta$ SERIES STAINLESS STEEL, PLAIN
WKS $-\times \times X-P A S=3 \theta \theta$ SERIES STAINLESS STEEL, PASSIVATED WKC $-\times \times \times-Z C=C O L D$ FINISHED STEEL, ZINC CLEAR TRIVALENT WKC-XXX-ZY = COLD FINISHED STEEL, ZINC YELLOW TRIVALENT Material/finish combinations may not be available in all sizes.

	$1{ }^{\prime \prime}$						1-3/8 ${ }^{\prime \prime}$		
ITEM NUMBER	PREFIX-013	PREFIX-014	PREFIX-015	PREFIX-00B	PREFIX-152	PREFIX-141	PREFIX-022	PREFIX-023	PREFIX-00F
(B) DIAMETER	$1.000{ }^{\prime \prime}$ (1)	1.000 " (1)	$1.000{ }^{\prime \prime}$ (1)	$1.000{ }^{\text {" (1) }}$	$1.000{ }^{\prime \prime}$ (1)	$1.000{ }^{\prime \prime}$ (1)	1.375" (1-3/8)	1.375" (1-3/8)	$1.375{ }^{\prime \prime}(1-3 / 8)$
(A) WIDTH	.188" (3/16)	.219" (7/32)	.250" (1/4)	.313" (5/16)	.375" (3/8)	.250" (1/4)	.250" (1/4)	.313" (5/16)	. $375{ }^{\text {" (3/8) }}$

	$1-1 / 8^{11}$				1-1/4				
ITEM NUMBER	PREFIX-016	PREFIX-017	PREFIX-018	PREFIX-00C	PREFIX-019	PREFIX-020	PREFIX-021	PREFIX-00D	PREFIX-00E
(B) DIAMETER	1.125" (1-1/8)	1.125" (1-1/8)	1.125" (1-1/8)	1.125" (1-1/8)	1.250" (1-1/4)	1.250" (1-1/4)	1.250" (1-1/4)	1.250" (1-1/4)	1.250" (1-1/4)
(A) WIDTH	.188" (3/16)	.219" (7/32)	.250" (1/4)	.313" (5/16)	.188" (3/16)	.219" (7/32)	.250" (1/4)	.313" (5/16)	.375" (3/8)

	1-1/2"			$2-1 / 8^{\prime \prime}$			
ITEM NUMBER	PREFIX-024	PREFIX-025	PREFIX-00G	PREFIX-126	PREFIX-127	PREFIX-128	PREFIX-129
(B) DIAMETER	1.500" (1-1/2)	1.500" (1-1/2)	1.500" (1-1/2)	2.125" (2-1/8)	2.125" (2-1/8)	2.125" (2-1/8)	2.125" (2-1/8)
(A) WIDTH	.250" (1/4)	.313" (5/16)	.375" (3/8)	.188" (3/16)	.250" (1/4)	.313" (5/16)	.375" (3/8)

Images are approximate actual size.
ZINC PLATING AND OTHER FINISHES AVAILABLE FOR ALL PARTS SEE PAGE 16

BOTH DESIGNS ARE STAND,ARD
IF A SPECIFIC STYLE IS REQUIRED,
PLEASE CONTACT OUR SALES TEAM

WOODRUFF - IMPERIAL

	$2-3 / 4^{\prime \prime}$				
ITEM NUMBER	PREFIX-ORX	PREFIX-OSX	PREFIX-OTX	PREFIX-OUX	PREFIX-OVX
(B) DIAMETER	2.750" (2-3/4)	2.750" (2-3/4)	2.750" (2-3/4)	2.750" (2-3/4)	2.750" (2-3/4)
(A) WIDTH	.250" (1/4)	.313" (5/16)	. 375 " (3/8)	.438" (7/16)	.500" (1/2)

[^3]
MRNLFRCTURING CRPRBILITIES:

Sawing

Drilling

Milling

Tumbling

Centerless Grinding

Surface Grinding

FOR MORE INFORMATION ABOUT OUR MANUFACTURING CAPABILITIES SEE "MANLIFACTURING PROCESSES" ON PAGE 2θ

Our Engineering Handbook is a great companion resource to this Key Stock Catalog. To learn about the steelmaking process, different grades of steel, platings, finishes, testing hardness, heat treating, and mechanical properties of steel, visit huyett.com/catalogs to view a pdf or download a copy today.

WOODRUFF - METRIC

DESCRIPTION

Woodruff keys are commonly found in machine tools and automotive applications. They are designed to be installed deep into a shaft and firmly embedded. As a result, they are less likely to slip out of the key way. Metric woodruff keys are only available with round bottoms.

HOW TO IDENTIFY

1. Verify half-moon shape.
2. Measure width (A).
3. Measure height (C).
4. Find the part number in the chart below. Or, compare your part to the part silhouettes in the chart below.

PREFIX MATERIAL/FINISH
WKMC $=$ CARBON STEEL, PLAIN*
WKMC-XXX-ZC $=$ COLD FINISHED STEEL, ZINC CLEAR TRIVALENT
Material/finish combinations may not be available in all sizes.

WOODRUFF TOLERANCES					
MATERIAL		WIDTH (A)		HEICHT (C)	
(Prefix)	(Material/Finish)	(Size Range)	(Tolerance)	(Size Range)	(Tolerance)
WKMC	Carbon Steel, Plain*	$\begin{aligned} & 1.5-3 \mathrm{~mm} \\ & 4-10 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & +0 /-0.020 \mathrm{~mm} \\ & +0 /-0.030 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 0-3 \mathrm{~mm} \\ & >3-6 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & +0 /-0.10 \mathrm{~mm} \\ & +0 /-0.12 \mathrm{~mm} \end{aligned}$
WKMC-XXX-ZC	Cold Finished Steel, Zinc Clear Trivalent			$\begin{aligned} & >6-10 \mathrm{~mm} \\ & >10-18 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & +0 /-0.15 \mathrm{~mm} \\ & +0 /-0.18 \mathrm{~mm} \end{aligned}$

	2.60 mm		3.70 mm			5.00 mm	5.00 mm	
	\checkmark		\square			\square		
ITEM NUMBER	WKMC-015026	WKMC-020026	WKMC-020037	WKMC-025037	WKMC-030037	WKMC-020050	WKMC-030050	WKMC-040050
(C) HEIGHT	2.60 mm	2.60 mm	3.70 mm	3.70 mm	3.70 mm	5.00 mm	5.00 mm	5.00 mm
(A) WIDTH	1.50 mm	2.00 mm	2.00 mm	2.50 mm	3.00 mm	2.00 mm	3.00 mm	4.00 mm
(B) LENGTH	6.76 mm	6.76 mm	9.66 mm	9.66 mm	9.66 mm	12.65 mm	12.65 mm	12.65 mm

WIDTH MEASUREMENTS

WOODRUFF - METRIC

	6.50 mm			7.50 mm		
	\square					
R	30065	40065	50065	40075	05075	. 060075
(c) HEGHT	6.50 mm	6.50 mm	6.50 mm	7.50 mm	7.50 mm	7.50 mm
(A) WIDTH	3.00 mm	4.00 mm	5.00 mm	4.00 mm	5.00 mm	6.00 mm
(B) Lencth	15.72 mm	15.72 mm	15.72 mm	18.57 mm	18.57 mm	18.57 mm

9.00 mm

	10.00 mm		11.	
ITEM NUMBER	WKMC-070100	WKMC-060110	WKMC-080110	WKMC-100110
(C) HEIGHT	10.00 mm	11.00 mm	11.00 mm	11.00 mm
(A) WIDTH	7.00 mm	6.00 mm	8.00 mm	10.00 mm
(B) LENGTH	24.49 mm	27.35 mm	27.35 mm	27.35 mm

16.00 mm

ITEM NUMBER	WKMC-080130	WKMC-100130	
(C) HEIGHT	13.00 mm	13.00 mm	WKMC-100160
(A) WIDTH	8.00 mm	10.00 mm	16.00 mm
(B) LENGTH	31.43 mm	31.43 mm	10.00 mm

Images are approximate actual size.
ZINC PLATING AND OTHER FINISHES AVAILABLE FOR ALL PARTS

SEE PAGE 16

H-PRO

DESCRIPTION

Hi-pro keys are standard woodruff keys with the added feature of anti-rock "feet." These feet keep the key from rolling in the key way and improve assembly efficiency. They are used to lock pulleys and gears to transmission shafts.

HOW TO IDENTIFY

1. Verify half-moon shape with feet.
2. Measure width (A).
3. Measure length (F).
4. Measure lip height (G).
5. Find the part number in the chart on the next page.

Or, compare your part to the part silhouettes in the chart on the next page.

PREFIX MATERIAL/FINISH

HIPRO $=$ COLD FINISHED STEEL, PLAIN*
HIPROA = COLD FINISHED ALLOY STEEL, PLAIN*
HIPROS $=$ STAINLESS STEEL, PLAIN
Material/finish combinations may not be available in all sizes.

ZINC PLATING AND OTHER FINISHES

 AVAILABLE FOR ALL PARTS
HI-PRO KEYS CAN BE PRODUCED IN MANY RADIUS, WIDTH, AND LENGTH COMBINATIONS

[^4]

	$3 / 8^{\prime \prime}$				$7 / 16^{\prime \prime}$	
ITEM NUMBER	PREFIX-604	PREFIX-605	PREFIX-606	PREFIX-608	PREFIX-705	PREFIX-706
(B) RADIUS	.3750" (3/8)	.3750" (3/8)	.3750" (3/8)	.3750" (3/8)	.4375" (7/16)	.4375" (7/16)
(A) WIDTH	.1250" (1/8)	.1563" (5/32)	.1875" (3/16)	.2500" (1/4)	.1563" (5/32)	.1875" (3/16)
(F) LENGTH	.7813" (25/32)	.7813" (25/32)	.7813" (25/32)	.7813" (25/32)	.9375" (15/16)	.9375" (15/16)
(G) LIP HEIGHT	.057"	. 071 "	.085"	.113"	. 071 "	.086"
(C) HEIGHT	.303"	.303"	.303"	.303"	.365"	.365"

	$7 / 16^{\prime \prime}$		1/2 ${ }^{1 \prime}$		
ITEM NUMBER	PREFIX-707	PREFIX-708	PREFIX-806	PREFIX-807	PREFIX-808
(B) RADIUS	.4375" (7/16)	.4375" (7/16)	.5000" (1/2)	.5000" (1/2)	.5000" (1/2)
(A) WIDTH	.2188" (7/32)	.2500" (1/4)	.1875" (3/16)	.2188" (7/32)	.2500" (1/4)
(F) LENGTH	.9375" (15/16)	.9375" (15/16)	.9375" (15/16)	$1.0625^{\prime \prime}(1-1 / 16)$	1.0625" (1-1/16)
(G) LIP HEIGHT	.100"	.114"	.086"	.100"	.115"
(c) HEIGHT	.365"	.365"	.428"	.428"	.428"

	1/2 ${ }^{\prime \prime}$	$9 / 16^{\prime \prime}$			
ITEM NUMBER	PREFIX-810	PREFIX-906	PREFIX-907	PREFIX-908	PREFIX-910
(B) RADIUS	.5000" (1/2)	.5625" (9/16)	.5625" (9/16)	.5625" (9/16)	.5625" (9/16)
(A) WIDTH	.3125" (5/16)	.1875" (3/16)	.2188" (7/32)	.2500" (1/4)	.3125" (5/16)
(F) LENGTH	1.0625" (1-1/16)	1.1875" (1-3/16)	1.1875" (1-3/16)	1.1875" (1-3/16)	1.1875" (1-3/16)
(G) LIP HEIGHT	.142"	.086"	.100"	.115"	.143"
(C) HEIGHT	.428"	.475"	.475"	.475"	.475"

Images are approximate actual size.

MACMINE REMSS

HUYETT.COM • 785-392-3017

HILPRO

| | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | |

ITEM NUMBER	PREFIX-1108	PREFIX-1110	PREFIX-1112
(B) RADIUS	.6875" (11/16)	.6875" (11/16)	.6875" (11/16)
(A) WIDTH	.2500" (1/4)	.3125" (5/16)	.3750" (3/8)
(F) LENGTH	1.4375" (1-7/16)	1.4375" (1-7/16)	1.4375" (1-7/16)
(G) LIP HEIGHT	.115"	. 143 "	.172"
(C) HEIGHT	.584"	.584"	.584"

	$3 / 4^{\prime \prime}$		
ITEM NUMBER	PREFIX-1208	PREFIX-1210	PREFIX-1212
(B) RADIUS	.7500" (3/4)	.7500" (3/4)	.7500" (3/4)
(A) WIDTH	.2500" (1/4)	.3125" (5/16)	.3750" (3/8)
(F) LENGTH	1.5625" (1-9/16)	1.5625" (1-9/16)	1.5625" (1-9/16)
(G) LIP HEIGHT	.115"	.145"	.175"
(c) HEIGHT	.631"	.631"	. $631{ }^{\prime \prime}$

| | | | |
| :--- | :--- | :--- | :--- | :--- |
| | | | |
| | | | |
| | | | |
| ITEM NUMBER | PREFIX-1706A | PREFIX-1706B | |
| (B) RADIUS | $1.0625^{\prime \prime}(1-1 / 16)$ | $1.0625^{\prime \prime}(1-1 / 16)$ | PREFIX-1708A |
| (A) WIDTH | $.1875^{\prime \prime}(3 / 16)$ | $.1875^{\prime \prime}(3 / 16)$ | $1.0625^{\prime \prime}(1-1 / 16)$ |
| (F) LENGTH | $1.6250 "(1-5 / 8)$ | $1.8750^{\prime \prime}(1-7 / 8)$ | $.2500^{\prime \prime}(1 / 4)$ |
| (G) LIP HEIGHT | $.084^{\prime \prime}$ | $.084^{\prime \prime}$ | $1.5625^{\prime \prime}(1-9 / 16)$ |
| (C) HEIGHT | $.396^{\prime \prime}$ | $.521^{\prime \prime}$ | $.115^{\prime \prime}$ |

	1-1/16		
ITEM NUMBER	PREFIX-1708B	PREFIX-1710A	PREFIX-1712A
(B) RADIUS	1.0625" (1-1/16)	1.0625" (1-1/16)	1.0625" (1-1/16)
(A) WIDTH	.2500" (1/4)	.3125" (5/16)	.3750" (3/8)
(F) LENGTH	1.8125" (1-13/16)	1.5625" (1-9/16)	1.5000" (1-1/2)
(G) LIP HEIGHT	.115"	.146"	.177"
(C) HEIGHT	.521"	.396"	.396"

UIDTH MEASUREMENTS

ZINC PLATING AND OTHER FINISHES AVAILABLE FOR ALL PARTS

AGSORTMEITH

300 Pieces, Form B Cold Finished Steel, Zinc Clear Trivalent

Parts Included	Size	Qty
$3101250125-0750$	$1 / 8^{\prime \prime} \times 1 / 8^{\prime \prime} \times 3 / 4^{\prime \prime}$	25
$3101250125-1000$	$1 / 8^{\prime \prime} \times 1 / 8^{\prime \prime} \times 1^{\prime \prime}$	25
$3101870187-0750$	$3 / 16^{\prime \prime} \times 3 / 16^{\prime \prime} \times 3 / 4^{\prime \prime}$	25
$3101870187-1000$	$3 / 16^{\prime \prime} \times 3 / 16^{\prime \prime} \times 1^{\prime \prime}$	25
$3101870187-1250$	$3 / 16^{\prime \prime} \times 3 / 16^{\prime \prime} \times 1-1 / 4^{\prime \prime}$	25
$3101870187-1500$	$3 / 16^{\prime \prime} \times 3 / 16^{\prime \prime} \times 1-1 / 2^{\prime \prime}$	25
$3102500250-0750$	$1 / 4^{\prime \prime} \times 1 / 4^{\prime \prime} \times 3 / 4^{\prime \prime}$	25
$3102500250-1000$	$1 / 4^{\prime \prime} \times 1 / 4^{\prime \prime} \times 1^{\prime \prime}$	25
$3102500250-1250$	$1 / 4^{\prime \prime} \times 1 / 4^{\prime \prime} \times 1-1 / 4^{\prime \prime}$	25
$3102500250-1500$	$1 / 4^{\prime \prime} \times 1 / 4^{\prime \prime} \times 1-1 / 2^{\prime \prime}$	25
$3103120312-1250$	$5 / 16^{\prime \prime} \times 5 / 16^{\prime \prime} \times 1-1 / 4^{\prime \prime}$	25
$3103120312-1500$	$5 / 16^{\prime \prime} \times 5 / 16^{\prime \prime} \times 1-1 / 2^{\prime \prime}$	25

Machine Key Metric DISP-MKM025	25 Pieces, Form A Cold Finished Steel, Zinc Clear Trivalent	
Parts Included	Size	Qty
32Z0404-080	$4 \mathrm{~mm} \times 4 \mathrm{~mm} \times 80 \mathrm{~mm}$	2
32Z0505-080	$5 \mathrm{~mm} \times 5 \mathrm{~mm} \times 80 \mathrm{~mm}$	3
32Z0606-080	$6 \mathrm{~mm} \times 6 \mathrm{~mm} \times 80 \mathrm{~mm}$	2
32Z0707-080	$7 \mathrm{~mm} \times 7 \mathrm{~mm} \times 80 \mathrm{~mm}$	2
3270807-080	$8 \mathrm{~mm} \times 7 \mathrm{~mm} \times 80 \mathrm{~mm}$	2
32Z0808-080	$8 \mathrm{~mm} \times 8 \mathrm{~mm} \times 80 \mathrm{~mm}$	3
32Z1008-080	$10 \mathrm{~mm} \times 8 \mathrm{~mm} \times 80 \mathrm{~mm}$	2
32Z1010-080	$10 \mathrm{~mm} \times 10 \mathrm{~mm} \times 80 \mathrm{~mm}$	2
32Z1208-080	$12 \mathrm{~mm} \times 8 \mathrm{~mm} \times 80 \mathrm{~mm}$	2
32Z1212-080	$12 \mathrm{~mm} \times 12 \mathrm{~mm} \times 80 \mathrm{~mm}$	2
32Z1610-080	$16 \mathrm{~mm} \times 10 \mathrm{~mm} \times 80 \mathrm{~mm}$	1
32Z1811-080	$18 \mathrm{~mm} \times 11 \mathrm{~mm} \times 80 \mathrm{~mm}$	1
32Z2012-080	$20 \mathrm{~mm} \times 12 \mathrm{~mm} \times 80 \mathrm{~mm}$	1

Machine Key Metric DISP-MKM058	58 Pieces, Form A Cold Finished Steel, Zinc Clear Trivalent	
Parts Included	Size	Qty
32Z0404-040	$4 \mathrm{~mm} \times 4 \mathrm{~mm} \times 40 \mathrm{~mm}$	8
32Z0505-040	$5 \mathrm{~mm} \times 5 \mathrm{~mm} \times 40 \mathrm{~mm}$	8
32Z0606-040	$6 \mathrm{~mm} \times 6 \mathrm{~mm} \times 40 \mathrm{~mm}$	10
32Z0807-040	$8 \mathrm{~mm} \times 7 \mathrm{~mm} \times 40 \mathrm{~mm}$	4
32Z0808-040	$8 \mathrm{~mm} \times 8 \mathrm{~mm} \times 40 \mathrm{~mm}$	10
32Z1008-040	$10 \mathrm{~mm} \times 8 \mathrm{~mm} \times 40 \mathrm{~mm}$	4
32Z1010-040	$10 \mathrm{~mm} \times 10 \mathrm{~mm} \times 40 \mathrm{~mm}$	4
32Z1212-040	$12 \mathrm{~mm} \times 12 \mathrm{~mm} \times 40 \mathrm{~mm}$	4
3221409-040	$14 \mathrm{~mm} \times 9 \mathrm{~mm} \times 40 \mathrm{~mm}$	4
32Z1610-040	$16 \mathrm{~mm} \times 10 \mathrm{~mm} \times 40 \mathrm{~mm}$	2

LOOKING FOR A CUSTOM ASSORTMENT OF PARTS?

WE'LL WORK WITH YOU TO DEVELOP, PACK,AGE, AND LABEL PARTS WITH YOUR BRAND

$\begin{aligned} & \text { Hi-Pro Key } \\ & \text { Imperial } \\ & \text { DISP-HPK120 } \end{aligned}$	60 Pieces Cold Finis Plain*	
Parts Included	Size	Qty
HIPRO-606	$3 / 16^{\prime \prime} \times 3 / 4 "$	10
HIPRO-706	$3 / 16^{\prime \prime} \times 7 / 8^{\prime \prime}$	10
HIPRO-504	$1 / 8^{\prime \prime} \times 5 / 8^{\prime \prime}$	10
HIPRO-503	$3 / 32^{\prime \prime} \times 5 / 8^{\prime \prime}$	10
HIPRO-505	$5 / 32$ " $\times 5 / 8^{\prime \prime}$	10
HIPRO-403	$3 / 32^{\prime \prime} \times 1 / 2^{\prime \prime}$	10
HIPRO-404	$1 / 8 " \times 1 / 2$ "	10
HIPRO-402	$1 / 16^{\prime \prime} \times 1 / 2^{\prime \prime}$	10
HIPRO-605	$5 / 32^{\prime \prime} \times 3 / 4$ "	10
HIPRO-708	$1 / 4 " \times 7 / 8^{\prime \prime}$	10
HIPRO-808	$1 / 4 " \times 1$ "	10
HIPRO-604	$1 / 8^{\prime \prime} \times 3 / 4 "$	10

Woodruff Key Imperial DISP-WKS060	60 Pieces Stainless Steel, Plain	
Parts Included	Size	Qty
WKS-002	$3 / 32^{\prime \prime} \times 1 / 2^{\prime \prime}$	8
WKS-003	$1 / 8^{\prime \prime} \times 1 / 2^{\prime \prime}$	8
WKS-005	$1 / 8^{\prime \prime} \times 5 / 8^{\prime \prime}$	5
WKS-006	$5 / 32{ }^{\prime \prime} \times 5 / 8 "$	5
WKS-007	$1 / 8^{\prime \prime} \times 3 / 4 "$	5
WKS-009	$3 / 16^{\prime \prime} \times 3 / 4$ "	4
WKS-00A	$1 / 4 " \times 7 / 8^{\prime \prime}$	2
WKS-011	$3 / 16^{\prime \prime} \times 7 / 8 "$	2
WKS-015	$1 / 4{ }^{\prime \prime} \times 1$ "	2
WKS-061	$3 / 16^{\prime \prime} \times 5 / 8 "$	5
WKS-091	$1 / 4 " \times 3 / 4 "$	4
WKS-212	$3 / 32^{\prime \prime} \times 3 / 8^{\prime \prime}$	10

Woodruff Key
 Imperial DISP-WKC250

250 Pieces Cold Finished Steel, Plain*

Woodruff Key
 Metric
 DISP-WKM350

350 Pieces
Cold Finished Steel,
Plain*

Parts Included
WKMC-015026
WKMC-020026

Size	Qty
$1.5 \mathrm{~mm} \times 2.6 \mathrm{~mm}$	25
$2 \mathrm{~mm} \times 2.6 \mathrm{~mm}$	25
$2 \mathrm{~mm} \times 5 \mathrm{~mm}$	25
$2.5 \mathrm{~mm} \times 3.7 \mathrm{~mm}$	25
$3 \mathrm{~mm} \times 3.7 \mathrm{~mm}$	25
$3 \mathrm{~mm} \times 6.5 \mathrm{~mm}$	25
$4 \mathrm{~mm} \times 5 \mathrm{~mm}$	25
$4 \mathrm{~mm} \times 7.5 \mathrm{~mm}$	25
$5 \mathrm{~mm} \times 7.5 \mathrm{~mm}$	20
$5 \mathrm{~mm} \times 9 \mathrm{~mm}$	20
$5 \mathrm{~mm} \times 10 \mathrm{~mm}$	15
$6 \mathrm{~mm} \times 7.5 \mathrm{~mm}$	15
$6 \mathrm{~mm} \times 9 \mathrm{~mm}$	15
$6 \mathrm{~mm} \times 11 \mathrm{~mm}$	15
$8 \mathrm{~mm} \times 11 \mathrm{~mm}$	15
$8 \mathrm{~mm} \times 13 \mathrm{~mm}$	15
$10 \mathrm{~mm} \times 13 \mathrm{~mm}$	10
$10 \mathrm{~mm} \times 16 \mathrm{~mm}$	10

Huyett is committed to maintaining the safety of our environment. The processes for plating and coating steels have the potential of introducing harmful chemical substances into the environment and are strictly controlled. Huyett complies with all environmental regulations and laws which apply to our products and services.

Learn more at huyett.com/quality.

REACH
Registration, Evaluation, Authorization, and Restriction of Chemical Substances

RoHS

Restriction of Hazardous Substances

AGSORTMEITH

Woodruff Key Imperial DISP-WKC100

Parts Included

WKC-001
WKC-002
WKC-003
WKC-004
WKC-005
WKC-006
WKC-007
WKC-008
WKC-009
WKC-00A
WKC-00B

WKC-00D
WKC-00E

WKC-00F
WKC-00G
WKC-010
WKC-011
WKC-012
WKC-013
WKC-014
WKC-015
WKC-016
WKC-017
WKC-018
WKC-019
WKC-020
WKC-021
WKC-022
WKC-023
WKC-024
WKC-025
WKC-091
WKC-ORX
WKC-OTX
WKC-OVX
WKC-126
WKC-127
WKC-128
WKC-129
WKC-152

100 Pieces Cold Finished Steel, Plain*

Size	Qty
$1 / 16^{\prime \prime} \times 1 / 2^{\prime \prime}$	3
$3 / 32$ " $\times 1 / 2^{\prime \prime}$	3
$1 / 8{ }^{\prime \prime} \times 1 / 2^{\prime \prime}$	5
$3 / 32$ " $\times 5 / 8^{\prime \prime}$	3
$1 / 8 " \times 5 / 8^{\prime \prime}$	3
$5 / 32$ " $\times 5 / 8^{\prime \prime}$	5
$1 / 8{ }^{\prime \prime} \times 3 / 4 "$	5
$5 / 32$ " $\times 3 / 4 "$	3
$3 / 16^{\prime \prime} \times 3 / 4 "$	13
$1 / 4{ }^{\prime \prime} \times 7 / 8^{\prime \prime}$	9
$5 / 16^{\prime \prime} \times 1$ "	2
$5 / 16^{\prime \prime} \times 1-1 / 4 "$	1
$3 / 8{ }^{\prime \prime} \times 1-1 / 4 "$	1
$3 / 8{ }^{\prime \prime} \times 1-3 / 8{ }^{\prime \prime}$	1
$3 / 8{ }^{\prime \prime} \times 1-1 / 2^{\prime \prime}$	1
$5 / 32$ " $\times 7 / 8^{\prime \prime}$	3
$3 / 16^{\prime \prime} \times 7 / 8^{\prime \prime}$	10
$7 / 32{ }^{\prime \prime} \times 7 / 8^{\prime \prime}$	2
$3 / 16^{\prime \prime} \times 1$ "	2
$7 / 32^{\prime \prime} \times 1$ "	1
$1 / 4 " \times 1^{\prime \prime}$	2
$3 / 16^{\prime \prime} \times 1-1 / 8^{\prime \prime}$	1
$7 / 32$ " $\times 1-1 / 8 "$	1
$1 / 4 " \times 1-1 / 8 "$	1
$3 / 16^{\prime \prime} \times 1-1 / 4 "$	1
$7 / 32 " \times 1-1 / 4 "$	1
$1 / 4{ }^{\prime \prime} \times 1-1 / 4{ }^{\prime \prime}$	1
$1 / 4 " \times 1-3 / 8 "$	1
5/16" $\times 1-3 / 8 "$	1
$1 / 4^{\prime \prime} \times 1-1 / 2^{\prime \prime}$	1
$5 / 16^{\prime \prime} \times 1-1 / 2^{\prime \prime}$	1
$1 / 4 " \times 3 / 4 "$	3
$1 / 4{ }^{\prime \prime} \times 2-3 / 4 "$	1
3/8" $\times 2-3 / 4$ "	1
$1 / 2$ " $\times 2-3 / 4$ "	1
$3 / 16^{\prime \prime} \times 2-1 / 8 "$	1
$1 / 4{ }^{\prime \prime} \times 2-1 / 8{ }^{\prime \prime}$	1
$5 / 16^{\prime \prime} \times 2-1 / 8^{\prime \prime}$	1
$3 / 8{ }^{\prime \prime} \times 2-1 / 8^{\prime \prime}$	1
$3 / 8 " \times 1$ "	2

Woodruff Key Imperial DISP-WKC350	350 Pieces Cold Finished Steel, Plain*	
Parts Included	Size	Qty
WKC-001	$1 / 16^{\prime \prime} \times 1 / 2^{\prime \prime}$	10
WKC-002	$3 / 32 " \times 1 / 2^{\prime \prime}$	20
WKC-003	$1 / 8^{\prime \prime} \times 1 / 2^{\prime \prime}$	20
WKC-004	$3 / 32$ " $\times 5 / 8 "$	20
WKC-005	$1 / 8{ }^{\prime \prime} \times 5 / 8 "$	30
WKC-006	$5 / 32$ " $\times 5 / 8$ "	40
WKC-007	$1 / 8{ }^{\prime \prime} \times 3 / 4 "$	10
WKC-008	$5 / 32$ " $\times 1 / 4$ "	20
WKC-009	$3 / 16^{\prime \prime} \times 3 / 4 "$	20
WKC-00A	$1 / 44^{\prime \prime} \times 7 / 8{ }^{\prime \prime}$	10
WKC-00B	$5 / 16^{\prime \prime} \times 1{ }^{\prime \prime}$	5
WKC-00C	$5 / 16^{\prime \prime} \times 1-1 / 8{ }^{\prime \prime}$	5
WKC-00D	$5 / 16^{\prime \prime} \times 1-1 / 4^{\prime \prime}$	5
WKC-00E	$3 / 8{ }^{\prime \prime} \times 1-1 / 4 "$	5
WKC-00F	$3 / 8{ }^{\prime \prime} \times 1-3 / 8{ }^{\prime \prime}$	3
WKC-00G	3/8" $\times 1-1 / 2^{\prime \prime}$	3
WKC-010	5/32" $\times 7 / 8{ }^{\prime \prime}$	5
WKC-011	$3 / 16^{\prime \prime} \times 7 / 8^{\prime \prime}$	5
WKC-012	$7 / 32$ " $\times 7 / 8^{\prime \prime}$	5
WKC-015	$1 / 4 " \times 1$ "	5
WKC-018	$1 / 4$ " $\times 1-1 / 8{ }^{\prime \prime}$	5
WKC-020	$7 / 32$ " $\times 1-1 / 4 "$	5
WKC-021	$1 / 4 " \times 1-1 / 4 "$	5
WKC-022	$1 / 4 " \times 1-3 / 8 "$	5
WKC-023	$5 / 16^{\prime \prime} \times 1-3 / 8{ }^{\prime \prime}$	5
WKC-024	$1 / 4 " \times 1-1 / 2^{\prime \prime}$	3
WKC-025	$5 / 16^{\prime \prime} \times 1-1 / 2^{\prime \prime}$	3
WKC-026	$3 / 16^{\prime \prime} \times 2-1 / 8^{\prime \prime}$	3
WKC-028	$5 / 16^{\prime \prime} \times 2-1 / 8^{\prime \prime}$	3
WKC-061	$3 / 16^{\prime \prime} \times 5 / 8 "$	15
WKC-091	$1 / 44^{\prime \prime} \times 3 / 4 "$	10
WKC-126	$3 / 16^{\prime \prime} \times 2-1 / 8 "$	3
WKC-128	$5 / 16^{\prime \prime} \times 2-1 / 8^{\prime \prime}$	3
WKC-211	$1 / 16^{\prime \prime} \times 3 / 8^{\prime \prime}$	10
WKC-212	$3 / 32$ " $\times 3 / 8{ }^{\prime \prime}$	20
WKC-213	$1 / 8{ }^{\prime \prime} \times 3 / 8 "$	10
WKC-127	$1 / 4$ " $\times 2-1 / 8{ }^{\prime \prime}$	1
WKC-128	$5 / 16^{\prime \prime} \times 2-1 / 8^{\prime \prime}$	1
WKC-129	$3 / 8{ }^{\prime \prime} \times 2-1 / 8^{\prime \prime}$	1
WKC-152	$3 / 81 \times 1$ "	2

Visit huyett.com to download

Material, Compliance, and RoHS/REACH Certifications* in your Account Order History.

GREASE FITTINGS \& ACCESSORIES

The Perfect Fit for Every Application

Huyett has developed the most comprehensive guide to grease fittings (zerks) and accessories the world has ever known. Inside you'll find to scale illustrations of every fitting known to man, technical and educational information, complete part number cross-referencing, design standards, manufacturing guidelines, quality control, and more related to inch, metric, nonferrous, Heritage Industrial ${ }^{\text {™ }}$, Alemite ${ }^{\oplus}$, and Lincoln ${ }^{\circledR}$ fittings. You'll also find detailed specifications and examples of SAE-LT, PTF, and UNF grease fittings, thread forming and drive type, special use fittings, pressure control, flow control, connecting parts, grease guns, and accessories.

Adapters
Adapters, Elbows, Extensions, Pipe Plugs, O-Rings
 Heritage ${ }^{\oplus}$, Alemite ${ }^{\oplus}$, Lincoln ${ }^{\oplus}$, SAE-LT, PTF, UNF, Button Head, Drive Type, Thread Forming

Couplers, Needle Nozzles, Quick Connect

Grease Guns Light, Medium, \& Heavy Duty Lever, Cordless, \& Pneumatic models

Fittings
SAE-LT, PTF, UNF, Thread Forming, Drive Type, Flush, Button Head; Vents

$\underbrace{\sim}$

Grease Guns Hoses Flexible Hoses, Rigid Extensions

FERROUS \$ NONFERROUS

```
- SAE - ISO METRIC
- SAE-LT
    - DIN
- PTF/NPTF - UNF
```

- BRITISH STANDARD

Your Master Distributor for

LINCOLN
ALEMITE
(1)

Hovititase

Great Prices•Low Minimums • Easy Ordering

GREASE FITTINGS CATALOG

INCLUDES A COMPLETE LINE OF O-RINGS, PIPE PLUGS, CONNECTORS, ACCESSORIES, AND ASSORTMENTS FOR GREASE GUNS AND LUBRICATION EQUIPMENT

A comprehensive guide to grease fittings and threads with:

- Scale illustrations of every fitting
- Technical and educational information
- Complete part number cross-referencing
- Design standards, manufacturing guidelines
- Quality Control
and more related to grease fittings and accessories.

HUYETT.COM • 785-392-3017

SHAFT FEATURES

A shaft is part of an assembly used to transmit power from one part to another. Keyed shafts have a key way milled axially along the full length of the shaft that holds key stock or machine keys to assembled components in a non-permanent manner. Partial key ways and other materials are available, including turned and polished and medium carbon steel (suitable to heat treat).

DESIGN CONSIDERATIONS

SHAFTS ARE KEYED TO ANSI STANDARDS

TOLERANCES

TIGHTER TOLER,ANCES ENSURE UNIFORM DISTRIBUTION OF LOADS

PRECISION STRAIGHTNESS WITH DECREASED RUN OUT IMPROVES ALIGNMENT OF COMPONENTS ALONG THE LENGTH OF THE SH,AFT

STAND,ARD 125 R,A SURFACE ROUGHNESS FEATURES MINIM,AL SURFACE IRREGULARITIES AND W,AVINESS

STRESS CONCENTRATION

A FILLET RADIUS IN THE KEY WAY OF A SHAFT REDUCES STRESS CONCENTRATION

Material fatigue results from cyclical stress, a repetitive process of applying and then releasing a load from an object. These stresses can be reversals - where the force switches to the opposite direction and back again; fluctuations - where the magnitude of the force continually varies; or in combination.

In addition to stress, corrosion reduces the fatigue strength of materials. The extent of the damage depends on both the severity of the corrosion and the number of stress cycles. Eventually, cyclic stress produces cracks in the material that grow perpendicular to the plane of the encountered force.
Once cracks become visible to the naked eye they can be examined to determine the root cause by looking carefully at the point where the failure started to identify the source and direction of the force.

POTENTIAL FATIGUE FAILURES
Fracture planes caused by common fatigue forces. Some fractures occur in the same plane as the force, while others are perpendicular.

KEYED

Keyed shafts are round shafting that have a key way cut into the material to mate with key stock or machine keys for assembly components.

PAGE 94

KEYS \ddagger KEY WAYS

FORM A

WOODRUFF

FORM B

HI-PRO

GIB HEAD

CUSTOM

QUICK RIFFRANCE GUIDE

	COMMON NAMES	APPLICABLE STANDARDS	FABRICATION	HOW TO IDENTIFY	COMMON USES	COMMENTS
	Pre-keyed Shaft; Keyed Shaft	$\begin{aligned} & \text { ANSI B17.1; } \\ & \text { BS } 4235 \end{aligned}$	Shafts are formed by hot rolling and finished to size by cold drawing or turning and grinding. Key ways are machined into the shaft.	Diameter \times length. The shaft diameter can be equal to or marginally less than nominal size.	Shafts, paired with key stock or machine keys, are used to transmit power from one part to another.	Depending on application, the shaft and key should be of comparable hardness.

MACHINING KEY WAYS

Key ways can be cut on a horizontal or vertical mill, a key seater, a vertical slotting machine, or a broach.

HORIZONTAL MILL

VERTICAL MILL

BROACH

KZYED - IMPERIAL

DESCRIPTION

Fully keyed shafts provide a good fit between the key and the key way. Key ways are cut in accordance with ANSI B17.1. Partial key ways and other materials are available including turned and polished and medium carbon steel (suitable to heat treat).

HOW TO IDENTIFY

1. Measure diameter (A).
2. Measure length (C).
3. Build the part number from the chart on the next page.

LENGTH(C) TOLERANCES		
LENGTH	TOLERANCE	
(Suffix) (Length)	(Tolerance)	
-12	$12^{\prime \prime}\left(1^{\prime}\right)$	$\pm 2^{\prime \prime}$
-36	$36^{\prime \prime}\left(3^{\prime}\right)$	
-72	$72^{\prime \prime}\left(6^{\prime}\right)$	
-144	$144^{\prime \prime}\left(12^{\prime}\right)$	

Nonstandard lengths up to 144 " are available. Lengths over 3' may be subject to a packaging charge.

$$
\begin{aligned}
& \text { PLAIN FINISH PARTS } \\
& \text { REQUIRE SPECIAL } \\
& \text { HANDLING TO PREVENT } \\
& \text { SURFACE CORROSION } \\
& \text { AND EXTEND SHELF LIFE }
\end{aligned}
$$

KFS6 $6=316$ STAINLESS STEEL, PLAIN
KFTP $=$ COLD FINISHED STEEL, PLAIN* ($1 \ominus 45$)
$K F Z=$ COLD FINISHED STEEL, ZINC CLEAR ($1 \theta 18$)

DIAMETER (A) TOLERANCES			
MATERIAL		DIAMETER	
(Prefix)	(Material/Finish)	(Size Range)	(Tolerance)
KF	Cold Finished Steel, Plain* (1018)	All Sizes	+0/-.0020"
KF44	Cold Finished Steel, Plain* (1144)		
KF45	Cold Finished Steel, Plain* (1045)	All Sizes	+0/-.0010"
KFS	303 Stainless Steel, Plain		
KFS6	316 Stainless Steel, Plain	All Sizes	+0/-.0020"
KFTP	Cold Finished Steel, Plain* (1045), Turned \& Polished	All Sizes	-.0005/-.0015"
KFZ	Cold Finished Steel, Zinc Clear (1018)	All Sizes	+0/-.0020"

KEYED SHAFTING CAN BE PRODUCED IN MANY DIAMETER AND LENGTH COMBINATIONS

KEY WAY (D \times B) SIZE	
DIAMETER	KEY WAY
(Shaft Size Range)	$(D) \times(B)$
$1 / 2^{\prime \prime}$	$1 / 8^{\prime \prime} \times 1 / 16^{\prime \prime}$
$5 / 8-7 / 8^{\prime \prime}$	$3 / 16^{\prime \prime} \times 3 / 32^{\prime \prime}$
$15 / 16-1-1 / 4^{\prime \prime}$	$1 / 4^{\prime \prime} \times 1 / 8^{\prime \prime}$
$1-5 / 16-1-3 / 8^{\prime \prime}$	$5 / 16^{\prime \prime} \times 5 / 32^{\prime \prime}$
$1-7 / 16-1-3 / 4 "$	$3 / 8^{\prime \prime} \times 3 / 16^{\prime \prime}$
$1-7 / 8-2-3 / 16^{\prime \prime}$	$1 / 2^{\prime \prime} \times 1 / 4^{\prime \prime}$
$2-7 / 16-2-1 / 2^{\prime \prime}$	$5 / 8^{\prime \prime} \times 5 / 16^{\prime \prime}$
$2-15 / 16-3-1 / 4^{\prime \prime}$	$3 / 4^{\prime \prime} \times 3 / 8^{\prime \prime}$
$3-3 / 8-3-3 / 4^{\prime \prime}$	$7 / 8^{\prime \prime} \times 7 / 16^{\prime \prime}$
$3-15 / 16-4-1 / 2^{\prime \prime}$	$1 "^{\prime \prime} \times 1 / 2^{\prime \prime}$

ZINC PLATING AND OTHER FINISHES AVAILABLE FOR ALL PARTS SEE PAGE 16

MATERIAL PREFIX

TO ORDER CHOOSE YOUR MATERIAL,

CODE	MATERIAL
KF-	Cold Finished Steel (1018), Plain*
KF44-	Cold Finished Steel (1144), Plain*
KF45-	Cold Finished Steel (1045), Plain*
KFS-	303 Stainless Steel
KFS6-	316 Stainless Steel
KFTP-	Cold Finished Steel, (1045) Plain* Turned \& Polished
KFZ-	Cold Finished Steel (1018), Zinc Clear

KEY WAY OR KEY SEAT?

THE CH,ANNEL, GROOVE, OR SLOT CUT INTO A SHIAFT OR HUB OF A GEAR, SPROCKET, OR PULLEY MAY BE C.ALLED A KEY WAY, OR KEY SEAT

BOTH TERMS ARE USED INTERCH,ANGEABLY TO
DESCRIBE THE SAME THING

HOW TO BUILD A PART NUMBER

1/2" to 4-1/2"

CHOOSE YOUR
DIAMETER,

CODE	DIAMETER	CODE	DIAMETER
Key Way Size ($\mathrm{D} \times \mathrm{B}$): $1 / 8^{\prime \prime} \times 1 / 16^{\prime \prime}$		Key Way Size ($\mathrm{D} \times \mathrm{B}$): $5 / 8{ }^{\prime \prime} \times 5 / 16^{\prime \prime}$	
0500	.500" (1/2)	2437	2.438" (2-7/16)
Key Way Size ($\mathrm{D} \times \mathrm{B}$): 3/16" $\times 3 / 32$ "		2500	2.500" (2-1/2)
0625	.625" (5/8)	2687	2.688" (2-11/16)
0687	.687" (11/16)	Key Way Size ($\mathrm{D} \times \mathrm{B}$) : 3/4" $\times 3 / 8^{\prime \prime}$	
0750	.750" (3/4)	2937	2.938" (2-15/16)
0812	.813" (13/16)	3000	$3.000{ }^{\prime \prime}$ (3)
0875	.875" (7/8)	3125	3.125" (3-1/8)
Key Way Size ($\mathrm{D} \times \mathrm{B}$): $1 / 4^{\prime \prime} \times 1 / 8^{\prime \prime}$		3187	3.188" (3-3/16)
0937	.938" (15/16)	3250	3.250" (3-1/4)
1000	1.000" (1)	Key Way Size ($\mathrm{D} \times \mathrm{B}$): 7/8" $\times 7 / 16^{\prime \prime}$	
1062	1.063" (1-1/16)	3375	$3.375{ }^{\text {" }}$ (3-3/8)
1125	1.125" (1-1/8)	3437	3.438" (3-7/16)
1187	1.188" (1-3/16)	3500	3.500" (3-1/2)
1250	1.250" (1-1/4)	3625	3.625 " (3-5/8)
Key Way Size ($\mathrm{D} \times \mathrm{B}$): $5 / 16^{\prime \prime} \times 5 / 32^{\prime \prime}$		3750	3.750" (3-3/4)
1312	1.313" (1-5/16)	Key Way Size ($\mathrm{D} \times \mathrm{B}$): $1^{\prime \prime} \times 1 / 2{ }^{\prime \prime}$	
1375	$1.375{ }^{\prime \prime}(1-3 / 8)$	3937	3.938" (3-15/16)
Key Way Size ($\mathrm{D} \times \mathrm{B}$): $3 / 8{ }^{\prime \prime} \times 3 / 16^{\prime \prime}$		4000	4.000 " (4)
1437	1.438" (1-7/16)	4250	4.250" (4-1/4)
1500	1.500" (1-1/2)	4375	4.375" (4-3/8)
1625	1.625" (1-5/8)	4437	4.438" (4-7/16)
1687	$1.688{ }^{\prime \prime}(1-11 / 16)$	4500	4.500" (4-1/2)

1750 1.750" (1-3/4)
Key Way Size ($D \times B$): $1 / 2^{\prime \prime} \times 1 / 4^{\prime \prime}$
1875 1.875" (1-7/8)
1937 1.938" (1-15/16)
2000 2.000" (2)
2187 2.188" (2-3/16)
2250 2.250" (2-1/4)

DON'T SEE WHAT YOU'RE LOOKING FOR? CONTACT SALES@HUYETT.COM OR CALL 785-392-3017

12" up to $144^{\prime \prime}$

CHOOSE YOUR LENGTH.

CODE	LENGTH
-12	$12^{\prime \prime}\left(1^{\prime}\right)$
-36	$36^{\prime \prime}\left(3^{\prime}\right)$
-72	$72^{\prime \prime}\left(6^{\prime}\right)$
-144	$144^{\prime \prime}\left(12^{\prime}\right)$

Nonstandard lengths up to $144^{\prime \prime}$ are available. Lengths over 3' may be subject to a packaging charge.

* Some exclusions apply

Visit your Account Order History at huyett.com to download Free* Material, Compliance, and RoHS/REACH Certifications along with:

KEYAD - MEIRIC

DESCRIPTION

Fully keyed shafting that provides a good fit between the key and the key way. Key ways are cut in accordance with DIN 6885. Partial key ways and other materials are available, including turned and polished and medium carbon steel (suitable to heat treat).

HOW TO IDENTIFY

1. Measure diameter (A).
2. Measure length (C).
3. Build the part number from the chart on the next page.

DIAMETER (A) TOLER,ANCES			
MATERIAL		DIAMETER	
(Prefix)	(Material/Finish)	(Size Range)	(Tolerance)
KFM	Cold Finished Steel, Plain* (1045)	All Sizes	+0/-0.0250 mm
KFMS	303 Stainless Steel, Plain		

KEYED SHAFTING CAN BE PRODUCED IN MANY DIAMETER AND LENGTH COMBINATIONS

KEY UAY $(D \times B)$ SIZE	
DIAMETER	KEY WAY
(Shaft Size Range)	(D) $\times(B)$
$13-17 \mathrm{~mm}$	$5 \mathrm{~mm} \times 3 \mathrm{~mm}$
$18-22 \mathrm{~mm}$	$6 \mathrm{~mm} \times 3.5 \mathrm{~mm}$
$23-30 \mathrm{~mm}$	$8 \mathrm{~mm} \times 4 \mathrm{~mm}$
$32-36 \mathrm{~mm}$	$10 \mathrm{~mm} \times 5 \mathrm{~mm}$
40 mm	$12 \mathrm{~mm} \times 5 \mathrm{~mm}$
$45-50 \mathrm{~mm}$	$14 \mathrm{~mm} \times 5.5 \mathrm{~mm}$
$60-65 \mathrm{~mm}$	$18 \mathrm{~mm} \times 7 \mathrm{~mm}$

LENGTH (C) TOLER,ANCES		
	ENC.TH	TOL.
(Suffix)	(Length)	(Tolerance)
-914	914.00 mm (3')	$\pm 50.8 \mathrm{~mm}$
-1219	1,219.20 mm (4')	
-1829	1,829.00 mm (6')	
-3048	$3,048.00 \mathrm{~mm}\left(10^{\prime}\right)$	
-3658	$3,658.00 \mathrm{~mm}$ (12')	

Nonstandard lengths up to $3,658 \mathrm{~mm}$ are available. Lengths over 3' may be subject to a packaging charge.

MANUFRCTURING CRPRBILITIES:

 Grinding Grinding

ZINC PLATING AND OTHER FINISHES AVAILABLE FOR ALL PARTS SEE PAGE 16

HOW TO BUILD A PART NUMBER

13 mm to 65 mm
KFM-
TO ORDER CHOOSE YOUR MATERIAL,

CODE	MATERIAL
KFM-	Cold Finished Steel, Plain*
KFMS-	303 Stainless Steel

DON'T SEE WHAT YOU'RE LOOKING FOR? CONTACT SALES@HUYETT.COM OR
CALL 785-392-3017

USED WITH KEY STOCK TO CONNECT TO A HUB

CHOOSE YOUR DIAMETER,

CODE	DIAMETER
Key Way Size ($\mathrm{D} \times \mathrm{B}$): $5 \mathrm{~mm} \times 3 \mathrm{~mm}$	
013	13.00 mm
014	14.00 mm
015	15.00 mm
016	16.00 mm
017	17.00 mm
Key Way Size ($\mathrm{D} \times \mathrm{B}$): $6 \mathrm{~mm} \times 3.5 \mathrm{~mm}$	
018	18.00 mm
019	19.00 mm
020	20.00 mm
021	21.00 mm
022	22.00 mm
Key Way Size ($\mathrm{D} \times \mathrm{B}$): $8 \mathrm{~mm} \times 4 \mathrm{~mm}$	
023	23.00 mm
024	24.00 mm
025	25.00 mm
026	26.00 mm
027	27.00 mm
028	28.00 mm
030	30.00 mm
Key Way Size ($\mathrm{D} \times \mathrm{B}$): $10 \mathrm{~mm} \times 5 \mathrm{~mm}$	
032	32.00 mm
033	33.00 mm
035	35.00 mm
036	36.00 mm
Key Way Size ($\mathrm{D} \times \mathrm{B}$): $12 \mathrm{~mm} \times 5 \mathrm{~mm}$	
040	40.00 mm
Key Way Size ($\mathrm{D} \times \mathrm{B}$): $14 \mathrm{~mm} \times 5.5 \mathrm{~mm}$	
045	45.00 mm
050	50.00 mm
Key Way Size ($\mathrm{D} \times \mathrm{B}$): $18 \mathrm{~mm} \times 7 \mathrm{~mm}$	
060	60.00 mm
065	65.00 mm

914 mm to $3,658 \mathrm{~mm}$

CHOOSE YOUR LENGTH.

CODE	LENGTH
-914	$914.00 \mathrm{~mm}\left(3^{\prime}\right)$
-1219	$1,219.20 \mathrm{~mm}\left(4^{\prime}\right)$
-1829	$1,829.00 \mathrm{~mm}\left(6^{\prime}\right)$
-3048	$3,048.00 \mathrm{~mm}\left(10^{\prime}\right)$
-3658	$3,658.00 \mathrm{~mm}\left(1^{\prime}\right)$

Nonstandard lengths up to
$3,658 \mathrm{~mm}$ are available. Lengths over 3' may be subject to a packaging charge.

. 4 HUB WITH AN INTEGR,AL KEY ALLOWS KEYED SHAFT TO BE USED WITHOUT KEY STOCK OR A MACHINE KEY

PLAIN FINISH PARTS REQUIRE SPECIAL HANDLING TO PREVENT SURFACE CORROSION AND EXTEND SHELF LIFE

TOOL STAEL FEATURES

Characterized by their durability, hardness, price, and ability to withstand shock without deforming, tool steels are used to cut, press, extrude, or stamp other metals. After being worked, they may be hardened to increase wear resistance and strength. Grades are specified by the American Iron and Steel Institute (AISI), the Society of Automotive Engineers (SAE), or the American Society for Testing and Materials (ASTM). For more information, see Tool Steel Comparison on page 105.

DESIGN CONSIDERATIONS

DURABILITY

RESISTANCE TO DEFORMATION AT ELEVATED TEMPERATURES (ALSO KNOWN AS RED-H.ARDNESS)

COMPARATIVE COST

4

4

LOW COST WATER-HARDENING TOOL STEEL IS USED MORE OFTEN THAN OILOR AIR-HARDENING TOOL STEELS

TOOL STEEL GRADES

Tool steels are defined by their dimensional stability, wear resistance, toughness, hot hardness, and machinability. Severe conditions - high temperatures, heavy loads, or corrosive environments - require higher alloy and carbon contents.

COLD WORK STEELS

Frequently used for making cold working tools for applications under $200^{\circ} \mathrm{C}$ ($392^{\circ} \mathrm{F}$). Higher amounts of chromium reduce distortion during heat treatment. Feature high hardenability, high toughness, and high abrasion, impact, and wear resistances.

$$
A 2-A 1 \theta, A / R-H A R D E N I N G
$$

Medium alloy composition with $1 \%-6 \%$ carbon and up to 5% chromium. Has the least tendency to crack during hardening. Considered a mid-range grade between oilhardening and shock resistant grades. Do not quench in oil or water.
OI-O7, OIL-HARDENING

A low alloy/high carbon ($0.85 \%-1.55 \%$) steel with manganese, chromium, and molybdenum. Quenched in oil to produce high wear resistance and hardness between HRC 56-62.

D2-D7, HIGH CARBON, HIGH CHROMIUM
Contain 1.4\% - 2.3\% carbon and 12\% 14% chromium along with molybdenum, cobalt, and vanadium. Often thought of as stainless or semi-stainless, but corrosion resistance is limited due to high chromium and carbon. Wear resistant, but not as tough as low alloy steels.

HOT WORK STEELS

Feature high hot yield strength, toughness, high red-hardness, wear resistance, erosion resistance, and resistance to softening in temperatures up to $675^{\circ} \mathrm{C}\left(1,247^{\circ} \mathrm{F}\right)$.
HI-HI9

Medium carbon content with 5\% chromium. Can be through hardened to HRC 40-55 with little distortion. Requires oil quenching.

$$
\mathrm{H} 2 \theta-\mathrm{H} 26
$$

Low carbon content with 9\% - 18\% tungsten and $3 \%-4 \%$ chromium. Extra resistant to softening, more prone to brittleness, working hardness to HRC 45-55. To minimize scaling, quench in oil or salt.

$$
\mathrm{H} 41-\mathrm{H} 43
$$

Low carbon content with 8\% molybdenum along with chromium, tungsten, and vanadium.

UATER-HARDENING STEELS WI-W3

Most common. These general purpose, lowcost, medium to high carbon ($0.60 \%-1.3 \%$) steels are easily machined, or formed. They can be case hardened by heat treating up to HRC 68. Overall, they are more brittle and more susceptible to cracking or warping
than other steels. Best suited for small parts and working conditions up to $150^{\circ} \mathrm{C}\left(302^{\circ} \mathrm{F}\right)$.

HIGH-SPEED STEELS (HSS)
Designed for high speed metal cutting and machining operations. Features hardenability to HRC 60-70, high heat resistance for red-hardness up to $500^{\circ} \mathrm{C}$ ($932^{\circ} \mathrm{F}$) enables sharpening without damaging material, and reasonable toughness.

$$
M 1-M 47
$$

Contain molybdenum as a primary alloying element that increases resistance to softening at elevated temperatures.

$$
\begin{aligned}
& \text { SHOCK-RESISTANT STEELS } \\
& \text { SI-S7 }
\end{aligned}
$$

Contain medium carbon content from $0.40-0.55 \%, 1 \%-2 \%$ silicon, or up to 3% nickel. As their name suggests, they have good wear/abrasion resistance and resist shock at low to medium temperatures, with high strength and toughness. Can achieve HRC 58-60.

TOOL STEEL TYPES

GROUND STOCK

Ground stock is rectangular or square steel that has been ground to close tolerances for use in a wide range of industries. Once shaped, ground stock may be heat treated to harden.

DRILL ROD

Drill rod is round unhardened tool steel which is precision ground to tight tolerances. After machining, it may be hardened by heat treating, then drawn back to the desired hardness.

PAGE IO2

DEFINITIONS HARDNESS

The measure of how resistant steel is to various kinds of permanent deformation when a force is applied.
STRENGTH

A measure of steel's elastic range where it will return to its original shape when gradual force is removed.

TOUGHNESS

The maximum amount of energy or impact force that can be absorbed before fracturing.

QUICK RIFFRANCE GUIDE

	COMMON NAMES	APPLICABLE STANDARDS
$\begin{aligned} & \frac{0}{2} \frac{v}{u} \\ & 0 \\ & \frac{1}{u} \\ & \frac{0}{4} \\ & \hline \end{aligned}$	Tool Steel; Ground Flat Stock; Flat Bar Stock; Flat Stock; Gauge Plate	AISI/SAE A2; AISI/SAE D2; AISI/SAE O2; AISI/SAE W2
$\begin{aligned} & \ddagger 0 \\ & \bar{N} O \\ & N \end{aligned}$	Drill Rod	AISI/SAE A2; AISI/SAE D2; AISI/SAE O2; AISI/SAE H13; AISI/SAE W2

FABRICATION

Cold drawn, annealed bar stock that is subsequently ground to remove all traces of decarburization and achieve precision height and width.

Cold drawn, annealed round stock that is ground and polished to achieve exacting size with no decarburization left on the bars.

HOW DENTIFY

Tight tolerances

 and ground surface finish. Durable and resistant to abrasion.
Tight tolerances

 and ground surface finish. Durable and resistant to abrasion.
COMMON USES

Depending on grade, ground stock can be used as dies, punches, templates, and stripper plates.

Drill rod, depending on grade, is used to make tools like drill bits, taps, dowel pins, and hammers.

COMMENTS

Ground stock is free from decarburization.

Drill rod is
free from decarburization.

MILD STEEL VS. HARDENED STEEL

Hardened steel is much more difficult to work or machine. Mild steel can generally be machined using high-speed steel (HSS) or cobalt tools. Both mild steel and hardened steel can be called "ground" as this refers to a method used to shape steel, not the material or the tempering process.

Have a piece of steel and are unsure if it has been hardened or not? Here's an easy way to find out:

[^5]

[^6]
GROUND STOCK

DESCRIPTION

Ground stock is annealed rectangular or square steel that has been ground to close tolerance for use in a wide range of industries. Once shaped, ground stock may be heat treated to harden. To learn more about heat treating, visit huyett.com/catalogs to download a copy of our Engineering Handbook.

HOW TO IDENTIFY

1. Measure thickness (B).
2. Measure width (A).
3. Measure length (C).
4. Build the part number from the chart on the next page.

PREFIX	MATERIAL/FINISH	
GS01	$=$	O1* * (Oil-hardening Steel)
GS02	$=$	O1 * (Oil-hardening Steel), Oversize
GS10	$=$	D2 * (High-chrome Air-hardening Steel)
GS11	$=$	D2* * (High-chrome Air-hardening Steel), Oversize
GS20	$=$	S7* (Shock-resistant Air-hardening Steel), Oversize GS
GS30	$=$	Cold Finished Carbon Steel, Plain* (1018)
GS41	$=$	A2* (Air-hardening Steel)
GS42	$=$	A2* (Air-hardening Steel), Oversize

GS50	$=$	M2* (High-speed Steel)
GS60	$=$	Cold Finished Alloy Steel, Plain* (4142)
GS61	$=$	Cold Finished Alloy Steel, Plain* (4142), Oversize
GS70	$=$	O6* (Oil-hardening Steel) $^{\text {GS90 }}=$
GS91	$=$	410 Stainless Steel, Plain
Material/finish combinations may not be available in all sizes.		

THICKNESS (B) AND UIDTH (A) TOLERANCES				
MATERIAL		SQUARE		RECTANGLE
(Prefix)	(Material/Finish)	(Size Range)	(Tolerance)	(Size Range) (Tolerance)
Standard				
GS01	O1* (Oil-hardening Steel)	All Sizes	$\pm .0010{ }^{\prime \prime}$	$\begin{array}{ll} \text { (Thickness Size) } & \\ \text { All Sizes } & \pm .0010 " \\ \text { (Width Size) } & \\ \text { All Sizes } & +.0050 /-0 " \end{array}$
GS10	D2* (High-chrome Air-hardening Steel)			
GS30	Cold Finished Steel, Plain* (1018)			
GS41	A2* (Air-hardening Steel)			
GS50	M2* (High-speed Steel)			
GS60	Cold Finished Alloy Steel, Plain* (4142)			
GS70	O6* (Oil-hardening Steel)			
GS90	410 Stainless Steel, Plain			
Oversize				
GS02	O1* (Oil-hardening Steel)	All Sizes	+.0100/+.0150"	$\begin{aligned} & \text { (Thickness Size) } \\ & \text { All Sizes +.0100/+.0150" } \\ & \begin{array}{ll} \text { (Width Size) } \\ \text { All Sizes } \quad+.0100 /+.0150 " ~ \end{array} \end{aligned}$
GS11	D2* (High-chrome Air-hardening Steel)			
GS20	S7* (Shock-resistant Air-hardening Steel)			
GS42	A2* (Air-hardening Steel)			
GS61	Cold Finished Alloy Steel, Plain* (4142)			
GS91	440C Stainless Steel, Plain			

LENCTH(C) TOLERANCES		
LENGTH		TOLERANCE
(Suffix)	(Length)	(Tolerance)
-12	$12^{\prime \prime}\left(1^{\prime}\right)$	$+.1250 /+.2500^{\prime \prime}$
-18	$18^{\prime \prime}\left(1-1 / 2^{\prime}\right)$	
-24	$24^{\prime \prime}\left(2^{\prime}\right)$	$+.1875 /+.3750 "$ $+.5000 /-0 "($ Stainless $)$
-36	$36^{\prime \prime}\left(3^{\prime}\right)$	$+.2500 /+.5000^{\prime \prime}$
-60	$60^{\prime \prime}\left(5^{\prime}\right)$	$+1.0000 /-0{ }^{\prime \prime}$

Nonstandard lengths up to 60"are available. Lengths over 3^{\prime} may be subject to a packaging charge.

```
        GROUND FLAT STOCK
        CAN BE PRODUCED IN
    MANY HEIGHT, WIDTH, AND
    LENGTH COMBINATIONS
```

HOW TO BUILD A PART NUMBER

HUYETT.COM • 785-392-3017

DRHL ROD - FRACTIONAL INCH

DESCRIPTION

Drill rod is round unhardened (but tough) tool steel that is precision ground to tight tolerances and machined to produce a wide variety of tools. It may then be hardened by heat treating then drawn back to the desired hardness. (DRV is pre-hardened.)

HOW TO IDENTIFY

1. Measure diameter (A).
2. Build the part number from the chart on the next page.

DRO $=$ O1* (Oil-hardening Steel)
DRS $=$ S7* (Shock-resistant Air-hardening Steel)
DRV $=$ V44* (Pre-hardened H13S Steel)
DRW = W1* (Water-hardening Steel)
Material/finish combinations may not be available in all sizes.

DRHL R ROD - FRACTIONAL INCH

HOW TO BUILD A PART NUMBER

HUYETT.COM • 785-392-3017

DRUM ROD - LETTER \& NUMBER

PROUD DISTRIBUTORS OF:

AVE
A LINCOLN

TOOL STEEL COMPARISON

The American Iron and Steel Institute (AISI) and Society of Automotive Engineer (SAE) developed a scale of tool steel grades that is widely accepted throughout the industry by both producers and users of tool steels. That system is used in the following as a base for providing concise information on tool steel types, their properties, and methods of tool steel selection.
For example, an ejector pin for die-casting requires high toughness and hot hardness. For toughness the chart suggests H13, V44, and S7. For hot hardness the chart suggests M2, H13, and V44. Since H13 seems to be a good balance of the two necessary traits (toughness and hot hardness), it is a logical start. If the H13 part wears too rapidly, the next choice is S 7 .

AISI/SAE TOOL STEEL PROPERTIES		
TYPE	COMPARATIVE PROPERTIES	USE
A2	Used in place of O1 in applications requiring safer heat treatment, less distortion, and greater wear resistance. Maximum HRC 63.	Machining to finish job
A8	Air-hardening grade that has higher toughness than D2 and better wear resistance than $\mathrm{S7}$.	Pneumatic tools
D2	Offers better wear resistance and higher compressive strength than A2. Good for long duration runs. Maximum HRC 63.	Shock resistant, machine to finish
H13	Air-hardening material that resists thermal fatigue cracking. Better hardenability and wear resistance than 4140. Maximum HRC 54.	Hot-work die steel
M2	High-speed steel with good abrasion resistance and good toughness. Resists softening at high temperatures. Maximum HRC 65.	High heat environments
01	Dimensionally stable during hardening with high hardness response in low temperatures. Heat treatable up to HRC 65.	Tool and die
O6	Oil-hardening, non-deforming type tool steel with good resistance to wear and abrasion. Especially suitable for dies and punches in drawing, forming, and shaping operations.	Tool and die
S7	Used in cold-work tools needing high shock resistance. Good toughness with ease of heat treat and machinability. Maximum HRC 58.	Mold dies
V44	Free machining version of H 13 that is pre-hardened to HRC 43-48.	Pre-hardened for machine to finish
W1	Also known as commercial carbon for use in general metal working. Used where simple heat treatment is desirable. Maximum HRC 68.	General purpose
1018	Very common cold-forming steel for bending, brazing, welding, and forming. Must be carburized during heat treatment.	Weldable
1144	Medium-carbon resulferized steel with excellent free machining capabilities. Maximum HRC 22.	Free machining
4142	Pre-hardened to HRC 30. Good wear resistance, toughness, and machinability.	Forging

Rockwell Hardness C Scale (HRC)

HUYETT.COM • 785-392-3017

DRIL ROD - METRIC

DESCRIPTION

Drill rod is round, unhardened (but tough) tool steel that is precision ground to tight tolerances that is machined to produce a wide variety of tools. It may then be hardened by heat treating then drawn back to the desired hardness.

HOW TO IDENTIFY

1. Measure diameter (A)
2. Measure length (C).
3. Build the part number from the chart on the next page.

PREFIX MATERIAL/FINISH
DRMA $=A 2^{*}$ (AIR-HARDENING STEEL)
DRMO = Ol* (OIL-HARDENING STEEL)
DRMW = WI* (WATER-HARDENING STEEL)
Material/finish combinations may not be available in all sizes.

DRMO SERIES LENGTHS:
DRMO-\#\#\# $=914.40 \mathrm{~mm}\left(3^{\prime}\right)$
DRMO-\#\#\#-2 $=2000.00 \mathrm{~mm}\left(6.56^{\prime}\right)$
DRMO-\#\#\#-4 $=3657.60 \mathrm{~mm}$ (12')
All other materials available in 914.40 mm lengths only.

DRILL ROD TOLERANCES			
MATERIAL		DIAMETER (A)	
(Prefix)	(Material/Finish)	(Size Range)	(Tolerance)
DRMA	A2* (Air-hardening Steel)	$\begin{aligned} & 2-3 \mathrm{~mm} \\ & >3-6 \mathrm{~mm} \\ & >6-10 \mathrm{~mm} \\ & >10-18 \mathrm{~mm} \\ & >18-25 \mathrm{~mm} \end{aligned}$	$+0 /-0.025 \mathrm{~mm}$ $+0 /-0.030 \mathrm{~mm}$ $+0 /-0.036 \mathrm{~mm}$ $+0 /-0.043 \mathrm{~mm}$ $+0 /-0.052 \mathrm{~mm}$
DRMO	O1* (Oil-hardening Steel)	$\begin{aligned} & 1-3 \mathrm{~mm} \\ & >3-6 \mathrm{~mm} \\ & >6-10 \mathrm{~mm} \\ & >10-18 \mathrm{~mm} \\ & >18-30 \mathrm{~mm} \\ & >30-50 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & +0 /-0.025 \mathrm{~mm} \\ & +0 /-0.030 \mathrm{~mm} \\ & +0 /-0.036 \mathrm{~mm} \\ & +0 /-0.043 \mathrm{~mm} \\ & +0 /-0.052 \mathrm{~mm} \\ & +0 /-0.062 \mathrm{~mm} \end{aligned}$
DRMW	W1* (Water-hardening Steel)	$\begin{aligned} & 1-3 \mathrm{~mm} \\ & >3-6 \mathrm{~mm} \\ & >6-10 \mathrm{~mm} \\ & >10-18 \mathrm{~mm} \\ & >18-30 \mathrm{~mm} \\ & >30-50 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & +0 /-0.025 \mathrm{~mm} \\ & +0 /-0.030 \mathrm{~mm} \\ & +0 /-0.036 \mathrm{~mm} \\ & +0 /-0.043 \mathrm{~mm} \\ & +0 /-0.052 \mathrm{~mm} \\ & +0 /-0.062 \mathrm{~mm} \end{aligned}$

LENCTH (C) TOLERANCES		
LENCTH	TOL.	
(Suffix)	(Length)	(Tolerance)
(None)	$914.40 \mathrm{~mm}\left(3^{\prime}\right)$	$+3.175 /-0 \mathrm{~mm}$
-2 (DRMO Only)	2000.00 mm $(6.56 ')$	$+3.175 /-0 \mathrm{~mm}$
-4 (DRMO Only)	$3657.6 \mathrm{~mm} \mathrm{(12')}$	$\pm 152.4 \mathrm{~mm}$

Nonstandard lengths up to 12 ' are available. Lengths over 3' may be subject to a packaging charge.

> DRILL ROD CAN BE PRODUCED IN MANY
> DIAMETER AND LENGTH COMBINATIONS

DRM, ROD

HOW TO BUILD A PART NUMBER

* Some exclusions apply

Visit your Account Order History at huyett.com to download Free* Material, Compliance, and RoHS/ REACH Certifications along with:

SHIM \& SPACER FEATURES

Shims are slices of metal or plastic material used to fill space between two objects or faces of objects. They are used for leveling, for adding support, or adjusting for a better fit. While some shims are wedge shaped to make them easier to install, machined shims are usually flat, with tight tolerances. They are available in a variety of styles and configurations to accommodate almost any application. While shim rings and washers have the same appearance and some shims are even called washers, the two have very different functions - washers are designed to take and spread loads, shims fill space.

DESIGN CONSIDERATIONS

WASHERS VS. SHIMS

WHILE BOTH ARE USED TO PROTECT MACHINED COMPONENTS, REDUCE VIBR,ATION, OR ACT AS A SOUND BUFFER, WISHERS SPREAD THE LOAD OF A BOLT OR SCREW, SHIMS TAKE UP SPACE AND ALIGN PARALLEL AND ANGLED SURFACES OF INTERFACING ELEMENTS

W.ASHERS ARE STAMPED LEAVING A ROLLOVER EDGE AND BREAKOUT EDGE
W.ASHERS COST LESS

TH,AN SHIMS

SHIMS H.AVE SMOOTH CORNERS, FL,AT EDGES, AND PARALLEL FACES

VERY FLAT WITH CONSISTENT THICKNESS

[^7]PREVENTING WEAR

IF THE HARDNESS OF THE SHIM AND COMPONENT FACES DO NOT MATCH, THE SOFTER FACE WILL BE SUBJECTED TO EXCESSIVE WEAR

FOR BEST RESULTS, AND TO S.AVE TIME AND MONEY ON REBUILDS, SHIMS SHOULD BE DESIGNED INTO APPLICATIONS TO PREVENT CONTACT BETWEEN EXPENSIVE COMPONENTS

A set of feeler gauges (or leaf gauge) can be very handy to determine the amount of space that needs to be shimmed.

SHIV \& SPACER TYPES

AREOR SHIMS

Also known as shim rings, arbor shims are made from precise materials with specific tolerances. They are used for spacing and alignment.

PAGE 114

COLLARS

Collars are similar to arbor spacers. A key way cut into the inside diameter slides over, and turns with, shafts and machine keys to precisely position arbors in milling machines, saws, and grinders.

PAGE 126

SLOTTED

Slotted shims are an efficient way to solve alignment and leveling problems because they do not have to be hand cut. They are used on assembled machine components in order to maximize alignment and balance.

ARBOR SPACERS

The inside diameter of an arbor spacer features a key way that slides over a shaft and machine key during installation. A wide range of sizes and thicknesses allow accurate alignment and spacing.

PAGE 116

LENG:THENING

Lengthening shims fit over the screw threads and under the shoulder of stripper bolts, which, in effect, lengthens the stripper bolt length.

PAGE 128

STOCK

Shim stock is available in flat sheets, laminated flat sheets, and rolls in a variety of materials to fit your need. It can be cut in the field to fit your application.

DESICN \& USE

SLOTTED SHIMS FOR MACHINE ALIGNMENT

IMPROPERLY MOUNTED MOTOR

An improperly mounted motor may cause significant damage to the motor house, mounts, and adjoining components.

Shimming the mounts provides a repeatable alignment preventing damage to valuable equipment.

Slotted shims are used to align machinery and are installed around anchor bolts that connect to motor mounts. Typically the machine is lifted or tilted while the shims are slid into place near motor mounts. In most cases the anchor bolt is straddled on either side through the shim slot.

It is important for the slot to completely straddle the threads so as not to interfere with threads during torquing, and to prevent distortion of the shim. The tab of the shim is used to prevent the opportunity for the installer's fingers to be crushed when the machine is lowered onto the mounts. The best method of installation is to slide the shim and straddle the anchor bolt until you can feel it touching, then withdraw the shim a small amount (approx. 1 mm) to ensure clearance of the threads.

MOTOR WITH SHIM INST.ALLED

PROUD DISTRIBUTOR OF

Hose Clamps, Bridge Pins, Cotter Pins, Hitch Pins, Shaft Collars, \& Grease Fittings

Clevis Pins, Lanyards, \& Helical Spring
Lock Washer

MAK-A-KEY
Precision Key Stock
\& Machine Keys

DISC-LOCK

Single-Use, Heavy Duty, Engineered Self-Locking Washers \& Safety Wheel Nuts

Ready-Made \&
Custom Fastener Assortments \& Kits

EXPANOPIN

High Carbon \& Stainless Steel Slotted Spring Pins

TECSERIES

Reusable, Standard \& Heavy Duty, Engineered Self-Locking Wedge Locking Washers

ARaymond©

Speed Nuts, Expansion Nuts, U-Nuts, Self-Thread Lock Nuts, Trim \& Panel Clips, Palnut Push-Ons, \& Nut/Bolt Assemblies

SPIROL

Coiled Spring Pins, Slotted Spring Pins, Spacers, \& Thrust Washers

ROTOR CLIP

Retaining Rings, Circlips Hose Clamps, Spiral Rings, Constant Section Rings, \& Wave Springs

DESICN \& USE

SHIM SELECTION GUIDELINES

FOR BEST RESULTS, DO NOT USE MORE THAN FOUR SHIMS IN ONE SETTING

SANDWICH THINNER SHIMS BETWEEN THICKER SHIMS FOR PROTECTION

NEVER SHIM MORE
THAN AN OVERALL ELEVATION OF . $15 \theta^{\prime \prime}$

Shim assortments include a variety of thicknesses that can be used individually or in combination to create any thickness from .001 " to .150 ". For best results, keep your shim assortment fully stocked so that you can remain within these design standards in any application.

STANDARD SIZES

Shim sizing is proportional to the size of the anchor bolts and can be estimated based on the horsepower of the machine:

ESTIMATED SHIM SIZES AND
HORSEPOUER RANGES
Size A
Size B
SHIM DIMENSIONS
$2^{\prime \prime} \times 2^{\prime \prime}$ with $9 / 16^{\prime \prime}$ slot
Size with $13 / 16^{\prime \prime}$ slot
$4^{\prime \prime} \times 4^{\prime \prime}$ with $1-3 / 16^{\prime \prime}$ slot
$5^{\prime \prime} \times 5^{\prime \prime}$ with $1-9 / 16^{\prime \prime}$ slot

ALSO AVAILABLE AT HUYETT.CDM

MOTOR FRAME SIZING

There are some standard shim sizes based on standard motor frame numbers. The following table serves as a guide:

MOTOR FR, ME NUMBERS							
SIZE A		SIZE B		SIZE C		SIZE D	
$2^{\prime \prime} \times 2^{\prime \prime} \times 9 / 16^{\prime \prime}$		$3^{\prime \prime} \times 3^{\prime \prime} \times 13 / 16^{\prime \prime}$		4" $\times 4$ " $\times 1-3 / 16^{\prime \prime}$		5" $\times 5^{\prime \prime} \times 1-9 / 16^{\prime \prime}$	
42	184	66*	325	203*	408	502	681
48	185	253	326	204*	409	503	682
56	186	254	327	224*	443	504	683
143	187	255	328	225*	444	505	684
145	188	256	329	363	445	506	685
162	189	257		364	446	507	686
163	1810	258		365	447	508	687
164	213	259		366	448	509	689
165	214	283		367	449	582	
166	215	284		368	504*	583	
167	216	285		369	505*	585	
168	217	286		403	506*	586	
169	218	287		404	507*	587	
1610	219	288		405	508*	588	
182	2110	289		406	509*	589	
183		323		407			
		324					

* Old frame number

QUICK RIEFERENCE GUIDE

Shims are a class of materials used for spacing and alignment. Made with precise materials and production techniques, shims are available in a variety of styles and materials to suit your needs.

	ARBOR SHIM	$\begin{aligned} & \triangle R B O R \\ & \text { SPACER } \end{aligned}$	SHIM WASHER	SHIM SUPPORT WASHER
COMMON NAMES	Shim; Slitter Shim; Shim Washer	Keyed Spacer; Arbor Shim	Shim Washer; PS Shim Washer	Support Washers; Support Rings; SS Shim Ring; Backup Ring
APPLICABLE STANDARDS	None known	Other than matching standard key way sizes, no standards are known.	DIN 988 PS series	DIN 988 SS series
FABRICATION	Most commonly made from high carbon steel, also known as blue tempered, stainless steel, or brass. Other materials not standard, but are used.	Most commonly made from high carbon steel, also known as blue tempered, stainless steel, or brass. Other materials not standard, but are used.	Usually stamped from shim steel (1045-1075). Standard sizes generally $0.25-1.0 \mathrm{~mm}$ thick, though range is 0.15 - 1.9 mm . ID and OD generally expressed in increments of 0.1 mm .	Usually stamped from spring steel to HRC 44 - 49. Larger sizes sometimes machined from tubing with ground side faces.
HOW TO IDENTIFY	Outside diameter \times inside diameter \times thickness.			
COMMON USES	Used for fast, accurate spacing of milling cutters, gang cutters, saws, slitting blades, and grinding tools.	Used to fit arbors onto various types of small machine tools, including grinders. Key way aligns to the mating key ways of mating components.	Primary purpose is to take up axial play between machine components. Shim washers are common components in gear boxes and gearing systems.	Used between machine components. Often used to provide a flat and solid surface for a retaining ring that retains components against a shaft.
COMMENTS	Some versions made from 1010 full hard material, which is more pliable but has less wear properties than blue tempered.	There is a thicker version that is produced from machined parts known as a keyed spacer.	Generally much less expensive than DIN 988 SS series. No imperial standards.	Generally much more expensive than DIN 988 PS series due to more precision in manufacturing. No imperial standards.

QUICK REFERENCE CUIDE

	SPACER / COLLAR	LENGTHENING / SHORTENING:	SLOTTED	SHIM STOCK
COMMON NAMES	Slitter Spacer; Arbor Spacer; Arbor Collar	Variable Shim; Lengthening Shim; Shoulder Screw Shim; Stripper Bolt Shim	Slotted Shim; Horseshoe Shim; Slotted Motor Shim	Shim Stock; Shim Rolls; Rolled Shim
APPLICABLE STANDARDS	While there are no known standards, thicknesses and tolerances are aligned with industry norms.	None known, though ID and OD match the mating dimensions of a stripper bolt.	Stainless steel and plastic are most common. Sizes are called out using letters representing the squared dimensions of the slot.	While there are no known standards, thickness tolerances are carefully controlled, as is the material content.
FABRICATION	Usually hardened and ground parallel and perpendicular. Lapped for parallelism. Edges are chamfered.	Stamped from spring steel, or medium to high carbon grades, 1045 1095.	Designed with a bolt slot to ease installation. Stainless steel is most common.	Rolled or flat sheets. Rolled is more economical to manufacture, ship, and store, though flat sheets tend to work better when trying to cut a large piece to size, as the rolls tend to want to reroll and not stay flat until installed.
HOW TO IDENTIFY	Most often specified to an application using a blueprint. Mostly custom parts.	Screw/bolt size \times thickness.	Size code \times thickness.	Length \times width \times thickness.
COMMON USES	Used for spacing and as collets for machined components on shafts.	Used to increase the effective length of shoulder bolts/stripper screws by installing over the threads but remaining beneath the stepped shaft of the stripper bolt.	Used to level motors and machinery, especially to ensure the alignment of components, such as a motor to a pump.	Primary use is in tool and die alignment. Also used for automotive and truck axle shims.
COMMENTS	Generally a custom fabricated part.	Stripper bolts are used in tool and die work to hold stripper plates in place. Stripper plates guide the punch tip in a stamping operation and this controlling parallelism is important.	The tab allows for safe installation without risk to operator to crush fingers. Do not shim more than . 150 " and use thicker shims on either side of thin shims to minimize wear.	Color coded plastic stock eliminates need to check thickness with a micrometer. Custom cut edges need to be deburred before installation.

ARBOR SHIM

DESCRIPTION

Arbor shims are thin, washer-like discs designed to prevent axial movement in assembled components. Unlike washers, shims are manufactured with specific tolerances for an exact fit. The contact faces of the shim and component must be smooth and of similar hardness to avoid excessive wear.

HOW TO IDENTIFY

1. Measure inside diameter (B).
2. Measure thickness (C).
3. Build the part number from the chart on the next page.

ARBOR SHIM TOLERANCES							
MATERIAL		OUTSIDE DIAMETER (A)		INSIDE DIAMETER (B)		THICKNESS (C)	
(Prefix)	(Material/Finish)	(Size Range)	(Tolerance)	(Size Range)	(Tolerance)	(Size Range)	(Tolerance)
SHIM SHIMS	Carbon Steel, Plain* Stainless Steel, Plain	All Sizes	+0/-.005"	All Sizes	+.005/-0"	$\begin{aligned} & .007-.015^{\prime \prime} \\ & .020-.025^{\prime \prime} \\ & .032 " \\ & .047-.093^{\prime \prime} \\ & .125^{\prime \prime} \end{aligned}$	$\begin{aligned} & \pm .00075 " \\ & \pm .001 " \\ & \pm .002 " \\ & \pm .0025 " \\ & \pm .003 " \end{aligned}$

Assembled machines like this air locking differential may require several thin adjustment shims along with a thicker master shim.

HOW MANY SHIMS CAN I USE?

For best results, shims should be installed with the thinner shims in the middle to protect them. They should not be stacked more than four deep.

Additional shims can introduce slippage and create opportunities for dirt and corrosion to develop between layers.

ABBOR SPACER

DESCRIPTION

The inside diameter of an arbor spacer features a key way that slides over a shaft and machine key during installation. A wide range of tightly toleranced sizes and thicknesses are available for accurate alignment and spacing.

HOW TO IDENTIFY

1. Measure inside diameter (B).
2. Measure thickness (C).
3. Find the part number in the chart on the next page.

ARBOR SPACER TOLERANCES							
MATERIAL		OUTSIDE DIAMETER (A)		INSIDE DIAMETER (B)		THICKNESS (C)	
(Prefix)	(Material/Finish)	(Size Range)	(Tolerance)	(Size Range)	(Tolerance)	(Size Range)	(Tolerance)
ARBOR	Carbon Steel, Plain*	All Sizes	$\pm .002{ }^{\prime \prime}$	All Sizes	+.011/-0"	$\begin{aligned} & .001-.003 " \\ & \hline .004-.006 " \\ & \hline .007-.012 " \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 10 \% \\ & \pm .0005^{\prime \prime} \\ & \pm .00075^{\prime \prime} \\ & \pm .001 " \\ & \pm .0015^{\prime \prime} \\ & \pm .002 " \\ & \pm .0025^{\prime \prime} \\ & \pm .003 " \end{aligned}$

WHAT'S AN AREOR?

An arbor or mandrel, is a shaft, rod, or axle used to secure or support material, components, blades, or other work tools.

Arbor spacers are installed on either side of cutting tools in saws, slitters, and milling machines to take up slack.

KEY WAY SIZE	
$1 D$ (B)	KEY WAY (D \times E)
3/8-1/2"	1/8" $\times 3 / 64$ "
5/8"	$5 / 32{ }^{\prime \prime} \times 1 / 16^{\prime \prime}$
3/4-7/8"	$3 / 16^{\prime \prime} \times 5 / 64 "$
1-1-1/8"	$1 / 4 " \times 3 / 32$ "
1-1/4-1-3/8"	$5 / 16^{\prime \prime} \times 1 / 8^{\prime \prime}$
1-1/2-1-5/8"	$3 / 8 " \times 5 / 32 "$
1-3/4-1-7/8"	$7 / 16^{\prime \prime} \times 3 / 16^{\prime \prime}$
2"	$1 / 2^{\prime \prime} \times 3 / 16^{\prime \prime}$
2-1/4-2-1/2"	5/8" $\times 7 / 32$ "
2-3/4-3-1/2"	$3 / 4 " \times 1 / 4^{\prime \prime}$
4"	$1{ }^{\prime \prime} \times 5 / 8 "$

ABBOR SPACER

YOUR RETAINING RINGS DISTRIBUTOR

SHIM WASHER

DESCRIPTION

Frequently used with retaining rings or lock washers, shim washers prevent axial movement by taking up play between machine components. To ensure they retain their shape under excessive forces, the contact faces of the shim and component must be smooth and of similar hardness to avoid excessive wear.

HOW TO IDENTIFY

1. Measure inside diameter (B).
2. Measure thickness (C).
3. Find the part number in the chart on next page.

PREFIX MATERIAL/FINISH
PS $=$ CARBON STEEL, PLAIN*
Material/finish combinations may not be available in all sizes.

DON'T SEE WHAT YOU'RE LOOKING FOR? CONTACT SALES@HUYETT.COM OR CALL 785-392-3017

SHIM UASHER METRIC TOLERANCES							
MATERIAL		OUTSIDE DIAMETER (A)		INSIDE DIAMETER (B)		THICKNESS (C)	
(Prefix)	(Material/Finish)	(Size Range)	(Tolerance)	(Size Range)	(Tolerance)	(Size Range)	(Tolerance)
$F S$	Carbon Steel, Plain* Shim Washer	$\begin{aligned} & 6 \mathrm{~mm} \\ & 8-10 \mathrm{~mm} \\ & 12-18 \mathrm{~mm} \\ & 19-30 \mathrm{~mm} \\ & 32-50 \mathrm{~mm} \\ & 52-80 \mathrm{~mm} \\ & 85-120 \mathrm{~mm} \\ & 125-180 \mathrm{~mm} \\ & 190-200 \mathrm{~mm} \end{aligned}$	-0.030/-0.150 mm $-0.040 /-0.190 \mathrm{~mm}$ $-0.050 /-0.230 \mathrm{~mm}$ $-0.065 /-0.275 \mathrm{~mm}$ $-0.080 /-0.330 \mathrm{~mm}$ $-0.100 /-0.400 \mathrm{~mm}$ $-0.120 /-0.470 \mathrm{~mm}$ $-0.145 /-0.545 \mathrm{~mm}$ $-0.170 /-0.630 \mathrm{~mm}$	$\begin{aligned} & 3 \mathrm{~mm} \\ & 4-6 \mathrm{~mm} \\ & 7-10 \mathrm{~mm} \\ & 11-18 \mathrm{~mm} \\ & 19-30 \mathrm{~mm} \\ & 32-50 \mathrm{~mm} \\ & 52-80 \mathrm{~mm} \\ & 85-120 \mathrm{~mm} \\ & 130-170 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & +0.120 /+0.020 \mathrm{~mm} \\ & +0.150 /+0.030 \mathrm{~mm} \\ & +0.190 /+0.040 \mathrm{~mm} \\ & +0.230 /+0.050 \mathrm{~mm} \\ & +0.275 /+0.065 \mathrm{~mm} \\ & +0.330 /+0.080 \mathrm{~mm} \\ & +0.400 /+0.100 \mathrm{~mm} \\ & +0.470 /+0.120 \mathrm{~mm} \\ & +0.545 /+0.145 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 0.100 \mathrm{~mm} \\ & 0.150-0.250 \mathrm{~mm} \\ & 0.300-1.000 \mathrm{~mm} \\ & 1.200-2.000 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \pm 0.030 \mathrm{~mm} \\ & \pm 0.040 \mathrm{~mm} \\ & \pm 0.050 \mathrm{~mm} \\ & \pm 0.070 \mathrm{~mm} \end{aligned}$

Shim washers fill clearance between components while acting as buffers to suppress sound and prevent damage to machined components.

A lock washer or retaining ring may be used to secure the shim washer against interfacing elements.

HOW TO READ A PART NUMBER
Shim washers come in standard inside diameter x outside diameter \times thickness combinations.

DIN 988

ITEM	(A)	(C)
OUTSIDE	THICKNESS	
NUMBER	DIAMETER	

(B) Inside Diameter		
PS-003006-01	6.00 mm	0.10 mm
PS-003006-015	6.00 mm	0.15 mm
PS-003006-02	6.00 mm	0.20 mm
PS-003006-03	6.00 mm	0.30 mm
PS-003006-05	6.00 mm	0.50 mm
PS-003006-1	6.00 mm	1.00 mm

(B) Inside Diameter		
PS-004008-01	8.00 mm	0.10 mm
PS-004008-015	8.00 mm	0.15 mm
PS-004008-02	8.00 mm	0.20 mm
PS-004008-03	8.00 mm	0.30 mm
PS-004008-05	8.00 mm	0.50 mm
PS-004008-1	8.00 mm	1.00 mm

(B) Inside Diameter (B)		
PS-005010-01	10.00 mm	0.10 mm
PS-005010-015	10.00 mm	0.15 mm
PS-005010-02	10.00 mm	0.20 mm
PS-005010-03	10.00 mm	0.30 mm
PS-005010-05	10.00 mm	0.50 mm
PS-005010-1	10.00 mm	1.00 mm

6,00 (B)		
Inside Diameter		

(B) (Bside Diameter		
PS-007013-01	13.00 mm	0.10 mm
PS-007013-015	13.00 mm	0.15 mm
PS-007013-02	13.00 mm	0.20 mm
PS-007013-025	13.00 mm	0.25 mm
PS-007013-03	13.00 mm	0.30 mm
PS-007013-05	13.00 mm	0.50 mm
PS-007013-1	13.00 mm	1.00 mm

8.00 mm (B) Inside Diameter		
PS-008014-01	14.00 mm	0.10 mm
PS-008014-015	14.00 mm	0.15 mm
PS-008014-02	14.00 mm	0.20 mm
PS-008014-025	14.00 mm	0.25 mm

ITEM NUMBER	(A) OUTSIDE DIAMETER	(C) THICKNESS
PS-008014-03	14.00 mm	0.30 mm
PS-008014-05	14.00 mm	0.50 mm
PS-008014-1	14.00 mm	1.00 mm

9.00 (B) Inside Diameter		
PS-009015-01	15.00 mm	0.10 mm
PS-009015-015	15.00 mm	0.15 mm
PS-009015-02	15.00 mm	0.20 mm
PS-009015-025	15.00 mm	0.25 mm
PS-009015-03	15.00 mm	0.30 mm
PS-009015-05	15.00 mm	0.50 mm
PS-009015-1	15.00 mm	1.00 mm

(B) Inside Diameter (B)		
PS-010016-01	16.00 mm	0.10 mm
PS-010016-015	16.00 mm	0.15 mm
PS-010016-02	16.00 mm	0.20 mm
PS-010016-025	16.00 mm	0.25 mm
PS-010016-03	16.00 mm	0.30 mm
PS-010016-05	16.00 mm	0.50 mm
PS-010016-1	16.00 mm	1.00 mm

(B)	Inside Diameter	
PS-011017-01	17.00 mm	0.10 mm
PS-011017-015	17.00 mm	0.15 mm
PS-011017-02	17.00 mm	0.20 mm
PS-011017-03	17.00 mm	0.30 mm
PS-011017-05	17.00 mm	0.50 mm
PS-011017-1	17.00 mm	1.00 mm

 (B) Inside Diameter		
PS-012018-01	18.00 mm	0.10 mm
PS-012018-015	18.00 mm	0.15 mm
PS-012018-02	18.00 mm	0.20 mm
PS-012018-025	18.00 mm	0.25 mm
PS-012018-03	18.00 mm	0.30 mm
PS-012018-05	18.00 mm	0.50 mm
PS-012018-1	18.00 mm	1.00 mm

(B) Inside Diameter		
PS-013019-01	19.00 mm	0.10 mm
PS-013019-015	19.00 mm	0.15 mm
PS-013019-02	19.00 mm	0.20 mm
PS-013019-03	19.00 mm	0.30 mm
PS-013019-05	19.00 mm	0.50 mm
PS-013019-1	19.00 mm	1.00 mm
PS-013019-12	19.00 mm	1.20 mm

ITEM	(A)	(C)
OUTSIDE	THICKNESS	
NUMBER	DIAMETER	

(B) Inside Diameter		

(B) Inside Diameter		
PS-015021-01	21.00 mm	0.10 mm
PS-015021-015	21.00 mm	0.15 mm
PS-015021-02	21.00 mm	0.20 mm
PS-015021-03	21.00 mm	0.30 mm
PS-015021-05	21.00 mm	0.50 mm
PS-015021-1	21.00 mm	1.00 mm
PS-015021-12	21.00 mm	1.20 mm

(B) (Bside Diameter		
PS-015022-01	22.00 mm	0.10 mm
PS-015022-015	22.00 mm	0.15 mm
PS-015022-02	22.00 mm	0.20 mm
PS-015022-025	22.00 mm	0.25 mm
PS-015022-03	22.00 mm	0.30 mm
PS-015022-05	22.00 mm	0.50 mm
PS-015022-1	22.00 mm	1.00 mm
PS-015022-12	22.00 mm	1.20 mm

6.0.0 (B) Inside Diameter		

(B) Inside Diameter		
PS-017024-01	24.00 mm	0.10 mm
PS-017024-015	24.00 mm	0.15 mm
PS-017024-02	24.00 mm	0.20 mm
PS-017024-025	24.00 mm	0.25 mm
PS-017024-03	24.00 mm	0.30 mm
PS-017024-05	24.00 mm	0.50 mm
PS-017024-1	24.00 mm	1.00 mm

SHIN WASHER

PREFIX MATERIAL/FINISH

PS $=$ SPRING STEEL, PLAIN*
Material/finish combinations may not be available in all sizes.

SEE PAGE 118 FOR
 PS SHIM WASHER TOLERANCES

C \rightarrow

ITEM	(A)	(C)
OUTSIDE	THICKNESS	
NUMBER	DIAMETER	

(B)	Inside Diameter	
PS-017024-12	24.00 mm	1.20 mm
PS-017024-2	24.00 mm	2.00 mm

(B) Inside Diameter (B)		
PS-018025-01	25.00 mm	0.10 mm
PS-018025-015	25.00 mm	0.15 mm
PS-018025-02	25.00 mm	0.20 mm
PS-018025-025	25.00 mm	0.25 mm
PS-018025-03	25.00 mm	0.30 mm
PS-018025-05	25.00 mm	0.50 mm
PS-018025-1	25.00 mm	1.00 mm
PS-018025-12	25.00 mm	1.20 mm

9.00 (B)		
Inside Diameter		

20,00 (B) Inside Diameter		
PS-020028-01	28.00 mm	0.10 mm
PS-020028-015	28.00 mm	0.15 mm
PS-020028-02	28.00 mm	0.20 mm
PS-020028-025	28.00 mm	0.25 mm
PS-020028-03	28.00 mm	0.30 mm
PS-020028-05	28.00 mm	0.50 mm
PS-020028-1	28.00 mm	1.00 mm
PS-020028-12	28.00 mm	1.20 mm
PS-020028-15	28.00 mm	1.50 mm

$22,00 \mathrm{~m}$ (B)		
(B) Inde Diameter		
PS-022030-01	30.00 mm	0.10 mm
PS-022030-015	30.00 mm	0.15 mm
PS-022030-02	30.00 mm	0.20 mm
PS-022030-025	30.00 mm	0.25 mm

ITEM NUMBER	(A) OUTSIDE DIAMETER	(C) THICKNESS
PS-022030-03	30.00 mm	0.30 mm
PS-022030-05	30.00 mm	0.50 mm
PS-022030-1	30.00 mm	1.00 mm
PS-022030-12	30.00 mm	1.20 mm
PS-022030-15	30.00 mm	1.50 mm
PS-022032-01	32.00 mm	0.10 mm
PS-022032-015	32.00 mm	0.15 mm
PS-022032-02	32.00 mm	0.20 mm
PS-022032-025	32.00 mm	0.25 mm
PS-022032-03	32.00 mm	0.30 mm
PS-022032-05	32.00 mm	0.50 mm
PS-022032-1	32.00 mm	1.00 mm
PS-022032-12	32.00 mm	1.20 mm
PS-022032-15	32.00 mm	1.50 mm

25,00 (B) Inside Diameter

(B) Inside Diameter		
PS-025035-01	35.00 mm	0.10 mm
PS-025035-015	35.00 mm	0.15 mm
PS-025035-02	35.00 mm	0.20 mm
PS-025035-025	35.00 mm	0.25 mm
PS-025035-03	35.00 mm	0.30 mm
PS-025035-05	35.00 mm	0.50 mm
PS-025035-1	35.00 mm	1.00 mm
PS-025035-12	35.00 mm	1.20 mm
PS-025035-15	35.00 mm	1.50 mm
PS-025036-01	36.00 mm	0.10 mm
PS-025036-015	36.00 mm	0.15 mm
PS-025036-02	36.00 mm	0.20 mm
PS-025036-025	36.00 mm	0.25 mm
PS-025036-03	36.00 mm	0.30 mm
PS-025036-05	36.00 mm	0.50 mm
PS-025036-1	36.00 mm	1.00 mm
PS-025036-12	36.00 mm	1.20 mm
PS-025036-15	36.00 mm	1.50 mm

26.00 (B) Inside Diameter		
PS-026037-01	37.00 mm	0.10 mm
PS-026037-015	37.00 mm	0.15 mm
PS-026037-02	37.00 mm	0.20 mm
PS-026037-025	37.00 mm	0.25 mm
PS-026037-03	37.00 mm	0.30 mm
PS-026037-05	37.00 mm	0.50 mm

(TEM NUMBER	(A) OUTSIDE DIAMETER	(C)
THICKNESS		

(B) (inside Diameter		
PS-028040-01	40.00 mm	0.10 mm
PS-028040-015	40.00 mm	0.15 mm
PS-028040-02	40.00 mm	0.20 mm
PS-028040-025	40.00 mm	0.25 mm
PS-028040-03	40.00 mm	0.30 mm
PS-028040-05	40.00 mm	0.50 mm
PS-028040-1	40.00 mm	1.00 mm
PS-028040-12	40.00 mm	1.20 mm
PS-028040-15	40.00 mm	1.50 mm

30,00 (B) Inside Diameter		
PS-030042-01	42.00 mm	0.10 mm
PS-030042-015	42.00 mm	0.15 mm
PS-030042-02	42.00 mm	0.20 mm
PS-030042-025	42.00 mm	0.25 mm
PS-030042-03	42.00 mm	0.30 mm
PS-030042-05	42.00 mm	0.50 mm
PS-030042-1	42.00 mm	1.00 mm
PS-030042-12	42.00 mm	1.20 mm
PS-030042-15	42.00 mm	1.50 mm
PS-030042-2	42.00 mm	2.00 mm

	(B) Inside Diameter	
PS-032045-01	45.00 mm	0.10 mm
PS-032045-015	45.00 mm	0.15 mm
PS-032045-02	45.00 mm	0.20 mm
PS-032045-025	45.00 mm	0.25 mm
PS-032045-03	45.00 mm	0.30 mm
PS-032045-05	45.00 mm	0.50 mm
PS-032045-1	45.00 mm	1.00 mm
PS-032045-12	45.00 mm	1.20 mm
PS-032045-15	45.00 mm	1.50 mm
PS-032045-2	45.00 mm	2.00 mm

DIN 988

	(A)	(C)
ITEM	OUTSIDE	THICKNESS
NUMBER	DIAMETER	

(B) Inside Diameter		
PS-035040-01	40.00 mm	0.10 mm
PS-035040-015	40.00 mm	0.15 mm
PS-035045-01	45.00 mm	0.10 mm
PS-035045-015	45.00 mm	0.15 mm
PS-035045-02	45.00 mm	0.20 mm
PS-035045-025	45.00 mm	0.25 mm
PS-035045-03	45.00 mm	0.30 mm
PS-035045-05	45.00 mm	0.50 mm
PS-035045-1	45.00 mm	1.00 mm
PS-035045-12	45.00 mm	1.20 mm
PS-035045-15	45.00 mm	1.50 mm
PS-035045-2	45.00 mm	2.00 mm

(B) (nside Diameter		
PS-036045-01	45.00 mm	0.10 mm
PS-036045-015	45.00 mm	0.15 mm
PS-036045-02	45.00 mm	0.20 mm
PS-036045-025	45.00 mm	0.25 mm
PS-036045-03	45.00 mm	0.30 mm
PS-036045-05	45.00 mm	0.50 mm
PS-036045-1	45.00 mm	1.00 mm
PS-036045-12	45.00 mm	1.20 mm
PS-036045-15	45.00 mm	1.50 mm
PS-036045-2	45.00 mm	2.00 mm

(B) Inside Diameter		
PS-037047-01	47.00 mm	0.10 mm
PS-037047-015	47.00 mm	0.15 mm
PS-037047-02	47.00 mm	0.20 mm
PS-037047-025	47.00 mm	0.25 mm
PS-037047-03	47.00 mm	0.30 mm
PS-037047-05	47.00 mm	0.50 mm
PS-037047-1	47.00 mm	1.00 mm
PS-037047-12	47.00 mm	1.20 mm
PS-037047-15	47.00 mm	1.50 mm
PS-037047-2	47.00 mm	2.00 mm

(B) Inside Diameter		
PS-040047-01	47.00 mm	0.10 mm
PS-040047-015	47.00 mm	0.15 mm
PS-040050-01	50.00 mm	0.10 mm
PS-040050-015	50.00 mm	0.15 mm
PS-040050-02	50.00 mm	0.20 mm
PS-040050-025	50.00 mm	0.25 mm
PS-040050-03	50.00 mm	0.30 mm
PS-040050-05	50.00 mm	0.50 mm
PS-040050-1	50.00 mm	1.00 mm

ITEM NUMBER	(A) OUTSIDE DIAMETER	(C) THICKNESS
PS-040050-12	50.00 mm	1.20 mm
PS-040050-15	50.00 mm	1.50 mm
PS-040050-2	50.00 mm	2.00 mm

42 (B) Inside Diameter		
PS-042052-01	52.00 mm	0.10 mm
PS-042052-015	52.00 mm	0.15 mm
PS-042052-02	52.00 mm	0.20 mm
PS-042052-025	52.00 mm	0.25 mm
PS-042052-03	52.00 mm	0.30 mm
PS-042052-05	52.00 mm	0.50 mm
PS-042052-1	52.00 mm	1.00 mm
PS-042052-12	52.00 mm	1.20 mm
PS-042052-15	52.00 mm	1.50 mm
PS-042052-2	52.00 mm	2.00 mm

(B) (Bside Diameter		
PS-045055-01	55.00 mm	0.10 mm
PS-045055-015	55.00 mm	0.15 mm
PS-045055-02	55.00 mm	0.20 mm
PS-045055-025	55.00 mm	0.25 mm
PS-045055-03	55.00 mm	0.30 mm
PS-045055-05	55.00 mm	0.50 mm
PS-045055-1	55.00 mm	1.00 mm
PS-045055-12	55.00 mm	1.20 mm
PS-045055-15	55.00 mm	1.50 mm
PS-045055-2	55.00 mm	2.00 mm
PS-045056-01	56.00 mm	0.10 mm
PS-045056-015	56.00 mm	0.15 mm
PS-045056-02	56.00 mm	0.20 mm
PS-045056-025	56.00 mm	0.25 mm
PS-045056-03	56.00 mm	0.30 mm
PS-045056-05	56.00 mm	0.50 mm
PS-045056-1	56.00 mm	1.00 mm
PS-045056-12	56.00 mm	1.20 mm
PS-045056-15	56.00 mm	1.50 mm
PS-045056-2	56.00 mm	2.00 mm

4.0.0 (B) Inside Diameter		

ITEM	(A)	(C)
OUTSIDE	THICKNESS	
NUMBER	DIAMETER	

50,00 (B) Inside Diameter		
PS-050062-01	62.00 mm	0.10 mm
PS-050062-015	62.00 mm	0.15 mm
PS-050062-02	62.00 mm	0.20 mm
PS-050062-025	62.00 mm	0.25 mm
PS-050062-03	62.00 mm	0.30 mm
PS-050062-05	62.00 mm	0.50 mm
PS-050062-1	62.00 mm	1.00 mm
PS-050062-12	62.00 mm	1.20 mm
PS-050062-15	62.00 mm	1.50 mm
PS-050062-2	62.00 mm	2.00 mm
PS-050063-01	63.00 mm	0.10 mm
PS-050063-015	63.00 mm	0.15 mm
PS-050063-02	63.00 mm	0.20 mm
PS-050063-025	63.00 mm	0.25 mm
PS-050063-03	63.00 mm	0.30 mm
PS-050063-05	63.00 mm	0.50 mm
PS-050063-1	63.00 mm	1.00 mm
PS-050063-12	63.00 mm	1.20 mm
PS-050063-15	63.00 mm	1.50 mm
PS-050063-2	63.00 mm	2.00 mm
PS-050070-12	70.00 mm	1.20 mm

S2.00 (B)		
Inside Diameter		

(B) Inside Diameter (B)		
PS-054062-01	62.00 mm	0.10 mm
PS-054062-015	62.00 mm	0.15 mm
PS-054062-15	62.00 mm	1.50 mm

(B) (Bside Diameter		
PS-055068-01	68.00 mm	0.10 mm
PS-055068-015	68.00 mm	0.15 mm
PS-055068-02	68.00 mm	0.20 mm
PS-055068-025	68.00 mm	0.25 mm
PS-055068-03	68.00 mm	0.30 mm
PS-055068-05	68.00 mm	0.50 mm
PS-055068-1	68.00 mm	1.00 mm

SHIN WASHER

PREFIX MATERIAL/FINISH

PS $=$ SPRING STEEL, PLAIN*
Material/finish combinations may not be available in all sizes.

SEE PAGE 118 FOR PS SHIM WASHER TOLERANCES

ITEM NUMBER	(A) OUTSIDE DIAMETER	(C) THICKNESS
PS-080100-02	100.00 mm	0.20 mm
PS-080100-03	100.00 mm	0.30 mm
PS-080100-05	100.00 mm	0.50 mm
PS-080100-1	100.00 mm	1.00 mm
PS-080100-15	100.00 mm	1.50 mm
PS-080100-2	100.00 mm	2.00 mm

85 (B)		
Inside Diameter		

88.00 (B) Inside Diameter		
PS-088100-015	100.00 mm	0.15 mm

(B) (Bside Diameter		
PS-090110-01	110.00 mm	0.10 mm
PS-090110-015	110.00 mm	0.15 mm
PS-090110-02	110.00 mm	0.20 mm
PS-090110-03	110.00 mm	0.30 mm
PS-090110-05	110.00 mm	0.50 mm
PS-090110-1	110.00 mm	1.00 mm
PS-090110-15	110.00 mm	1.50 mm
PS-090110-2	110.00 mm	2.00 mm

95.00 (B) Inside Diameter		

100.00 mm

(B) Inside Diameter

PS-100120-01	120.00 mm	0.10 mm
PS-100120-02	120.00 mm	0.20 mm
PS-100120-03	120.00 mm	0.30 mm
PS-100120-05	120.00 mm	0.50 mm
PS-100120-1	120.00 mm	1.00 mm

DIN 988

SHIU WASHER

ITEM NUMBER	(A) OUTSIDE DIAMETER	(C) THICKNESS
PS-100120-2	120.00 mm	2.00 mm
PS-100125-01	125.00 mm	0.10 mm
PS-100125-02	125.00 mm	0.20 mm
PS-100125-03	125.00 mm	0.30 mm
PS-100125-05	125.00 mm	0.50 mm
PS-100125-1	125.00 mm	1.00 mm

105.00		
(B)	Inside Diameter	
PS-105130-01	130.00 mm	0.10 mm
PS-105130-015	130.00 mm	0.15 mm
PS-105130-02	130.00 mm	0.20 mm
PS-105130-03	130.00 mm	0.30 mm
PS-105130-05	130.00 mm	0.50 mm
PS-105130-1	130.00 mm	1.00 mm

(B) (nside Diameter		
PS-110125-01	125.00 mm	0.10 mm
PS-110125-015	125.00 mm	0.15 mm
PS-110140-01	140.00 mm	0.10 mm
PS-110140-015	140.00 mm	0.15 mm
PS-110140-02	140.00 mm	0.20 mm

ITEM NUMBER	(A) OUTSIDE DIAMETER	(C) THICKNESS
PS-110140-03	140.00 mm	0.30 mm
PS-110140-05	140.00 mm	0.50 mm
PS-110140-1	140.00 mm	1.00 mm

(B) Inside Diameter		
PS-120150-01	150.00 mm	0.10 mm
PS-120150-015	150.00 mm	0.15 mm
PS-120150-02	150.00 mm	0.20 mm
PS-120150-03	150.00 mm	0.30 mm
PS-120150-05	150.00 mm	0.50 mm
PS-120150-1	150.00 mm	1.00 mm

130.00		
(B) Inside Diameter		

ITEM	(A)	(C)
OUTSIDE	THICKNESS	

$\begin{array}{l}\text { 4.0.00 } \\ \text { (B) }\end{array}$		
Inside Diameter		

150.00		
(B) Inside Diameter		

\section*{| 60.00
 (B) Inside Diameter | | |
| :--- | :--- | :--- |
| PS-160190-05 | 190.00 mm | 0.50 mm |
| PS-160190-1 | 190.00 mm | 1.00 mm |}

170,00		
(B)	Inside Diameter	
PS-170200-03	200.00 mm	0.30 mm
PS-170200-05	200.00 mm	0.50 mm

huyett.com

huyett.com/MyAccount/OrderHistory
粦 Free MTRs*

* Order Status
* Order Tracking Info
* Expected Ship Date
* Login or Register at huyett.com today to download Material, Compliance, and RoHSIREACH Certifications from your Account Order History. Some Exclusions Apply.

PROUD DISTRI日UTORS DF:

HANDRCHEK EXPANOPIN TECSERIES ARaymonde

GUPPORT RUNG

DESCRIPTION

Similar to shim washers, support rings are covered under the DIN 988 specification. Support rings have a harder specification of spring steel, and are thicker. They are generally used with a snap ring or lock washers where excessive axial force is expected.

HOW TO IDENTIFY

1. Measure inside diameter (B).
2. Measure thickness (C).
3. Find the part number in the chart on the next page.

PREFIX MATERIAL/FINISH
SS $=$ SPRING STEEL, HARDENED*
Material/finish combinations may not be available in all sizes.

SHIM RING METRIC TOLERANCES							
MATERIAL		OUTSIDE DIAMETER (A)		INSIDE DIAMETER (B)		THICKNESS (C)	
(Prefix)	(Material/Finish)	(Size Range)	(Tolerance)	(Size Range)	(Tolerance)	(Size Range)	(Tolerance)
$5 S$	Spring Steel, Hardened - Support Washer	6 mm 8-10 mm $12-18 \mathrm{~mm}$ $19-30 \mathrm{~mm}$ 32-50 mm $52-80 \mathrm{~mm}$ 85-120 mm 125-180 mm 190-200 mm	-0.030/-0.150 mm $-0.040 /-0.190 \mathrm{~mm}$ $-0.050 /-0.230 \mathrm{~mm}$ $-0.065 /-0.275 \mathrm{~mm}$ $-0.080 /-0.330 \mathrm{~mm}$ $-0.100 /-0.400 \mathrm{~mm}$ $-0.120 /-0.470 \mathrm{~mm}$ $-0.145 /-0.545 \mathrm{~mm}$ $-0.170 /-0.630 \mathrm{~mm}$	3 mm 4-6mm 7-10 mm $11-18 \mathrm{~mm}$ $19-30 \mathrm{~mm}$ 32-50 mm 52-80 mm 81-120 mm $130-170 \mathrm{~mm}$	$+0.120 /+0.020 \mathrm{~mm}$ $+0.150 /+0.030 \mathrm{~mm}$ $+0.190 /+0.040 \mathrm{~mm}$ $+0.230 /+0.050 \mathrm{~mm}$ $+0.275 /+0.065 \mathrm{~mm}$ $+0.330 /+0.080 \mathrm{~mm}$ $+0.400 /+0.100 \mathrm{~mm}$ $+0.470 /+0.120 \mathrm{~mm}$ $+0.545 /+0.145 \mathrm{~mm}$	All Sizes	+0/-0.050 mm

DIN 988

ITEM NUMBER		(B) INSIDE DIAMETER	(C) THICKNESS
SS-003006-1	6.00 mm	3.00 mm	1.00 mm
SS-004008-1	8.00 mm	4.00 mm	1.00 mm
SS-005010-1	10.00 mm	5.00 mm	1.00 mm
SS-006012-12	12.00 mm	6.00 mm	1.20 mm
SS-007013-12	13.00 mm	7.00 mm	1.20 mm
SS-008014-12	14.00 mm	8.00 mm	1.20 mm
SS-009015-12	15.00 mm	9.00 mm	1.20 mm
SS-010016-12	16.00 mm	10.00 mm	1.20 mm
SS-011017-12	17.00 mm	11.00 mm	1.20 mm
SS-012018-12	18.00 mm	12.00 mm	1.20 mm
SS-013019-15	19.00 mm	13.00 mm	1.50 mm
SS-014020-15	20.00 mm	14.00 mm	1.50 mm
SS-015021-15	21.00 mm	15.00 mm	1.50 mm
SS-015022-15	22.00 mm	15.00 mm	1.50 mm
SS-016022-15	22.00 mm	16.00 mm	1.50 mm
SS-017024-15	24.00 mm	17.00 mm	1.50 mm
SS-018025-15	25.00 mm	18.00 mm	1.50 mm
SS-019026-15	26.00 mm	19.00 mm	1.50 mm
SS-020028-2	28.00 mm	20.00 mm	2.00 mm
SS-022030-2	30.00 mm	22.00 mm	2.00 mm
SS-022032-2	32.00 mm	22.00 mm	2.00 mm
SS-025035-2	35.00 mm	25.00 mm	2.00 mm
SS-025036-2	36.00 mm	25.00 mm	2.00 mm
SS-026037-2	37.00 mm	26.00 mm	2.00 mm
SS-028040-2	40.00 mm	28.00 mm	2.00 mm
SS-030042-25	42.00 mm	30.00 mm	2.50 mm
SS-032045-25	45.00 mm	32.00 mm	2.50 mm
SS-035045-25	45.00 mm	35.00 mm	2.50 mm
SS-036042-25	42.00 mm	36.00 mm	2.50 mm
SS-036045-25	45.00 mm	36.00 mm	2.50 mm
SS-037047-25	47.00 mm	37.00 mm	2.50 mm
SS-040047-25	47.00 mm	40.00 mm	2.50 mm
SS-040050-25	50.00 mm	40.00 mm	2.50 mm
SS-042052-25	52.00 mm	42.00 mm	2.50 mm
SS-045055-3	55.00 mm	45.00 mm	3.00 mm

ITEM NUMBER	$\begin{aligned} & \text { (A) } \\ & \text { OUTSIDE } \\ & \text { DIAMETER } \end{aligned}$		(C) THICKNESS
SS-045056-3	56.00 mm	45.00 mm	3.00 mm
SS-046060-9	60.00 mm	46.00 mm	9.00 mm
SS-048060-3	60.00 mm	48.00 mm	3.00 mm
SS-050062-3	62.00 mm	50.00 mm	3.00 mm
SS-050063-3	63.00 mm	50.00 mm	3.00 mm
SS-052065-3	65.00 mm	52.00 mm	3.00 mm
SS-055068-3	68.00 mm	55.00 mm	3.00 mm
SS-056065-121	65.00 mm	56.00 mm	12.10 mm
SS-056070-3	70.00 mm	56.00 mm	3.00 mm
SS-056072-3	72.00 mm	56.00 mm	3.00 mm
SS-060075-3	75.00 mm	60.00 mm	3.00 mm
SS-063080-3	80.00 mm	63.00 mm	3.00 mm
SS-065085-35	85.00 mm	65.00 mm	3.50 mm
SS-066075-124	75.00 mm	66.00 mm	12.40 mm
SS-066080-3	80.00 mm	66.00 mm	3.00 mm
SS-070090-35	90.00 mm	70.00 mm	3.50 mm
SS-075095-35	95.00 mm	75.00 mm	3.50 mm
SS-080090-35	90.00 mm	80.00 mm	3.50 mm
SS-080100-35	100.00 mm	80.00 mm	3.50 mm
SS-081095-112	95.00 mm	81.00 mm	11.20 mm
SS-081100-35	100.00 mm	81.00 mm	3.50 mm
SS-085105-35	105.00 mm	85.00 mm	3.50 mm
SS-090110-35	110.00 mm	90.00 mm	3.50 mm
SS-095115-35	115.00 mm	95.00 mm	3.50 mm
SS-100120-35	120.00 mm	100.00 mm	3.50 mm
SS-100125-35	125.00 mm	100.00 mm	3.50 mm
SS-105130-35	130.00 mm	105.00 mm	3.50 mm
SS-110140-35	140.00 mm	110.00 mm	3.50 mm
SS-120150-35	150.00 mm	120.00 mm	3.50 mm
SS-130160-35	160.00 mm	130.00 mm	3.50 mm
SS-140170-35	170.00 mm	140.00 mm	3.50 mm
SS-150180-35	180.00 mm	150.00 mm	3.50 mm
SS-160190-35	190.00 mm	160.00 mm	3.50 mm
SS-170200-35	200.00 mm	170.00 mm	3.50 mm

APPLICATION

IN ADDITION TO FILLING G.APS BETWEEN COMPONENTS, HARDENED SUPPORT
RINGS PROTECT EXPENSIVE COMPONENTS

COLLAR

DESCRIPTION

Collars are similar to arbor spacers and available in greater thicknesses. A key way cut into the inside diameter slides over, and turns with, shafts and machine keys to precisely position arbors in milling machines, saws, slitters, and grinders.

HOW TO IDENTIFY

1. Measure inside diameter (B).
2. Measure thickness (C).
3. Build the part number from the chart on the next page.

COLLAR TOLERANCES							
MATERIAL		OUTSIDE DIAMETER (A)		INSIDE DIAMETER (B)		THICKNESS (C)	
(Prefix)	(Material/Finish)	(Size Range)	(Tolerance)	(Size Range)	(Tolerance)	(Size Range)	(Tolerance)
SPCO	Carbon Steel, Plain*	All Sizes	+0/-.010"	All Sizes	+.003/-.001"	All Sizes	$\pm .000{ }^{\prime \prime}$

KEY WAY SIZE	
ID (B)	KEY WAY (D X E)
$3 / 4^{\prime \prime}$	$1 / 8^{\prime \prime} \times 1 / 16^{\prime \prime}$
1 "	$1 / 4^{\prime \prime} \times 3 / 32^{\prime \prime}$
$1-1 / 4^{\prime \prime}$	$5 / 16^{\prime \prime} \times 1 / 8^{\prime \prime}$
$1-1 / 2^{\prime \prime}$	$3 / 8^{\prime \prime} \times 5 / 32^{\prime \prime}$
2 "	$1 / 2^{\prime \prime} \times 3 / 16^{\prime \prime}$
$2-1 / 2^{\prime \prime}$	$5 / 8^{\prime \prime} \times 7 / 32^{\prime \prime}$

APPLICATION

SIMILAR TO ARBOR SP,ACERS, COLLARS ARE USED IN KEYED ASSEMBLIES TO SPACE OR POSITION CUTTING TOOLS

APPLICATION

LENGTHENING

DESCRIPTION

Lengthening shims are used to increase the effective length of the shaft of a stripper bolt, also known as a shoulder screw. The shim is placed at the base of the shaft over the threads.

HOW TO IDENTIFY

1. Measure inside diameter (B).
2. Measure thickness (C).
3. Find the part number in the chart on the next page.

PREFIX MATERIAL/FINISH
VSHIM = CARBON STEEL, PLAIN*, COMMERCIAL TOLERANCE VSHIM-\#\#\#L = CARBON STEEL, PLAIN*,

PRECISION TOLERANCE

ADDITIONAL SIZES AND FINISHES MAY BE AVAILABLE UPON REQUEST

LENGTHENING SHIM TOLERANCES							
MATERIAL		OUTSIDE DIAMETER (A)		INSIDE DIAMETER (B)		THICKNESS (C)	
(Prefix)	(Material/Finish)	(Size Range)	(Tolerance)	(Size Range)	(Tolerance)	(Size Range)	(Tolerance)
VSHIM	Carbon Steel, Plain*	All Sizes	+0/-005"	All Sizes	+.005/-0"	All Sizes	$\pm .001{ }^{\prime \prime}$
VSHIM-\#\#\#L	Carbon Steel, Plain*	All Sizes	$\pm .004 "$	All Sizes	+.004/-0"	All Sizes	$\pm .001$ "

PLACING LENGTHENING SHIMS OVER THE THREADS OF STRIPPER BOLTS INCREASES THE EFFECTIVE

HOW TO READ A PART NUMBER Lengthening shims come in standard inside diameter \times outside diameter \times thickness combinations.

OR

ITEM NUMBER	SCREW SIZE	(A) OUTSIDE DIAMETER	(B) INSIDE DIAMETER	(C) THICKNESS
VSHIM-0250-005L	.250" (1/4)	.248"	.171"	.005"
VSHIM-0250-015L	.250" (1/4)	.248"	.171"	.015"
VSHIM-26051	.250" (1/4)	.248"	.171"	.005"
VSHIM-0250-032L	.250" (1/4)	.248"	.187"	.032"
VSHIM-26053	.250" (1/4)	.248"	.187"	.032"
VSHIM-0312-005L	.313" (5/16)	.308"	.234"	.005"
VSHIM-0312-015L	.313" (5/16)	.308"	.234"	.015"
VSHIM-0312-032L	.313" (5/16)	.308"	.234"	.032"
VSHIM-26056	.313" (5/16)	.308"	.234"	.032"
VSHIM-0375-005L	. $375{ }^{\prime \prime}$ (3/8)	. 371 "	.289"	.005"
VSHIM-0375-015L	. $375{ }^{\prime \prime}$ (3/8)	. 371 "	.289"	.015"
VSHIM-0375-032L	. $375{ }^{\prime \prime}$ (3/8)	. 371 "	.289"	.032"
VSHIM-26059	. 375 " (3/8)	. $371{ }^{11}$.296"	.032"
VSHIM-0500-005L	.500" (1/2)	.496"	.352"	.005"
VSHIM-0500-015L	.500" (1/2)	.496"	.352"	.015"
VSHIM-0500-032L	.500" (1/2)	.496"	.352"	.032"
VSHIM-26060	.500" (1/2)	.496"	.352"	.005"
VSHIM-26061	.500" (1/2)	.496"	.352"	.015"
VSHIM-26062	.500" (1/2)	.496"	.352"	.032"
VSHIM-0625-005L	.625" (5/8)	.621"	.473"	.005"
VSHIM-0625-015L	.625" (5/8)	.621"	.473"	.015"
VSHIM-0625-032L	.625" (5/8)	.621"	.473"	.032"
VSHIM-26063	.625" (5/8)	.621"	.473"	.005"
VSHIM-26064	.625" (5/8)	.621"	.473"	.015"
VSHIM-26065	.625" (5/8)	.621"	.473"	.032"
VSHIM-0750-005L	.750" (3/4)	.746"	.598"	.005"
VSHIM-0750-015L	.750" (3/4)	.746"	.598"	.015"
VSHIM-0750-032L	.750" (3/4)	.746"	.598"	.032"
VSHIM-26066	.750" (3/4)	.748"	.598"	.005"
VSHIM-26067	.750" (3/4)	.748"	.598"	.015"
VSHIM-26068	.750" (3/4)	.748"	.598"	.032"

APPLICATION

LENGTHENING AND SHORTENING SHIMS ARE USED TO INCREASE OR DECREASE THE EFFECTIVE LENGTH OF STRIPPER BOLTS IN PUNCH AND DIE ASSEMBLIES LIKE THIS COMPOUND PUNCH USED TO PRODUCE W,ASHERS FROM FLAT STRIPS OF MET,AL

SHORTENING

DESCRIPTION

Used to shorten the length of the threads on stripper bolts, also known as shoulder screws. The shim is placed over the shaft under the head of the screw.

HOW TO IDENTIFY

1. Measure inside diameter (B).
2. Measure thickness (C).
3. Find the part number in the chart on the next page.

PREFIX MATERIAL/FINISH

VSHIM $=$	CARBON STEEL, PLAIN*,
	COMMERCIAL TOLERANCE
VSHIM-\#\#\#S $=$	CARBON STEEL, PLAIN*,

ADDITIONAL SIZES AND FINISHES MAY BE AVAILABLE UPON REQUEST

SHORTENINC SHIM TOLER,ANCES							
MATERIAL		OUTSIDE DIAMETER (A)		INSIDE DIAMETER (B)		THICKNESS (C)	
(Prefix)	(Material/Finish)	(Size Range)	(Tolerance)	(Size Range)	(Tolerance)	(Size Range)	(Tolerance)
VSHIM	Carbon Steel, Plain*	All Sizes	+0/-.005"	All Sizes	+.005/-0"	All Sizes	$\pm .001{ }^{\prime \prime}$
VSHIM-\#\#\#S	Carbon Steel, Plain*	All Sizes	$\pm .001$ "	All Sizes	$\pm .001{ }^{\prime \prime}$	All Sizes	$\pm .001{ }^{\prime \prime}$

HOW TO READ A PART NUMBER Shortening shims come in standard inside diameter x outside diameter x thickness combinations.

ITEM NUMBER	SCREW SIZE	(A) OUTSIDE DIAMETER	(B) INSIDE DIAMETER	(C) THICKNESS
VSHIM-0250-005S	.250" (1/4)	.366"	.252"	.005"
VSHIM-0250-010S	.250" (1/4)	.366"	.252"	.010"
VSHIM-0250-015S	.250" (1/4)	.366"	.252"	.015"
VSHIM-0250-020S	.250" (1/4)	.366"	.252"	.020"
VSHIM-0250-032S	.250" (1/4)	.366"	.252"	.032"
VSHIM-0250-062S	.250" (1/4)	.366"	.252"	.062"
VSHIM-26151	.250" (1/4)	. 366 "	.252"	.005"
VSHIM-26152	.250" (1/4)	.366"	.252"	.015"
VSHIM-26153	.250" (1/4)	.366"	.252"	.032"
VSHIM-0312-005S	.313" (5/16)	.424"	.313"	.005"
VSHIM-0312-010S	.313" (5/16)	.424"	. 313 "	.010"
VSHIM-0312-015S	.313" (5/16)	.424"	. 313 "	.015"
VSHIM-0312-020S	.313" (5/16)	.424"	. 313 "	.020"
VSHIM-0312-032S	.313" (5/16)	.424"	.313"	.032"
VSHIM-0312-062S	.313" (5/16)	.424"	.313"	.062"
VSHIM-26156	. 313 " (5/16)	.424"	. 313 "	.032"
VSHIM-0375-005S	. $375{ }^{\prime \prime}$ (3/8)	.557"	. 376	.005"
VSHIM-0375-010S	. 375 " (3/8)	.557"	. 376 "	.010"
VSHIM-0375-015S	. $375{ }^{\prime \prime}$ (3/8)	.557"	. $376{ }^{\prime \prime}$.015"
VSHIM-0375-020S	. 375 " (3/8)	.557"	. 376 "	.020"
VSHIM-0375-032S	. 375 " (3/8)	.557"	. $376{ }^{\prime \prime}$.032"
VSHIM-0375-062S	. 375 " (3/8)	.557"	. $376{ }^{\prime \prime}$.062"
VSHIM-26157	. 375 " (3/8)	.557"	. $376{ }^{\prime \prime}$.005"
VSHIM-26158	.375" (3/8)	.557"	. $376{ }^{\prime \prime}$.015"
VSHIM-26159	.375" (3/8)	.557"	. 376	.032"
VSHIM-0500-005S	.500" (1/2)	.738"	.501"	.005"
VSHIM-0500-010S	.500" (1/2)	.738"	. 501 "	.010"
VSHIM-0500-015S	.500" (1/2)	.738"	.501"	.015"
VSHIM-0500-020S	.500" (1/2)	.738"	.501"	.020"
VSHIM-0500-032S	.500" (1/2)	.738"	. 501 "	.032"
VSHIM-0500-062S	.500" (1/2)	.738"	.501"	.062"
VSHIM-26160	.500" (1/2)	.738"	. 501 "	.005"
VSHIM-26161	.500" (1/2)	.738"	. 501 "	.015"
VSHIM-26162	.500" (1/2)	.738"	. 501 "	.032"
VSHIM-0625-005S	.625" (5/8)	.870"	.626"	.005"
VSHIM-0625-010S	.625" (5/8)	.870"	.626"	.010"
VSHIM-0625-015S	.625" (5/8)	.870"	.626"	.015"
VSHIM-0625-020S	.625" (5/8)	.870"	.626"	.020"
VSHIM-0625-032S	.625" (5/8)	.870"	.626"	.032"
VSHIM-0625-062S	.625" (5/8)	.870"	.626"	.062"
VSHIM-26163	.625" (5/8)	.870"	.626"	.005"
VSHIM-26164	.625" (5/8)	.870"	.626"	.015"
VSHIM-26165	.625" (5/8)	.870"	.626"	. 032 "
VSHIM-0750-005S	.750" (3/4)	.995"	.751"	.005"
VSHIM-0750-010S	.750" (3/4)	.995"	.751"	.010"
VSHIM-0750-015S	.750" (3/4)	.995"	.751"	.015"
VSHIM-0750-020S	.750" (3/4)	.995"	.751"	.020"
VSHIM-0750-032S	.750" (3/4)	.995"	.751"	.032"
VSHIM-0750-062S	.750" (3/4)	.995"	.751"	.062"
VSHIM-26166	.750" (3/4)	.995"	.751"	.005"
VSHIM-26167	.750" (3/4)	.995"	.751"	.015"
VSHIM-26168	.750" (3/4)	.995"	.751"	.032"

SLOTHED

DESCRIPTION

Slotted shims are used on assembled machine components for alignment and balance. The slot allows insertion without disassembling components. The tab is used as a handle during installation.

HOW TO IDENTIFY

1. Measure width (A).
2. Measure length (B).
3. Measure thickness (C).
4. Build the part number from the chart on the next page.

SLOTTED SHIM TOLER,ANCES							
MATERIAL		LENCTH (A)		WIDTH (B)		THICKNESS (C)	
(Prefix)	(Material/Finish)	(Size Range)	(Tolerance)	(Size Range)	(Tolerance)	(Size Range)	(Tolerance)
SLOT	Stainless Steel, Plain	$\begin{aligned} & \text { A } \\ & \text { B } \\ & \text { C } \\ & \text { D } \end{aligned}$	$\begin{aligned} & \pm .200 " \\ & \pm .300^{\prime \prime} \\ & \pm .400 " \\ & \pm .500^{\prime \prime} \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { B } \\ & \text { C } \\ & \text { D } \end{aligned}$	$\begin{aligned} & \pm .020 " \\ & \pm .030 " \\ & \pm .040 " \\ & \pm .050 " \end{aligned}$	$\begin{aligned} & .001 " \\ & .002 " \\ & .003 " \\ & .004 " \\ & .005-.009 " \\ & .010-.020 " \\ & .025-.031 " \\ & .050-.062 " \\ & .075-.100 " \\ & .125 " \end{aligned}$	$\begin{aligned} & \pm .00008 " \\ & \pm .00010 " \\ & \pm .00015^{\prime \prime} \\ & \pm .00020^{\prime \prime} \\ & \pm .00025^{\prime \prime} \\ & \pm .00050^{\prime \prime} \\ & \pm .00075^{\prime \prime} \\ & \pm .00100^{\prime \prime} \\ & \pm .00200^{\prime \prime} \\ & \pm .0020 \end{aligned}$
SLOTC	Plastic, Elastomer			$\begin{aligned} & A-B \\ & C \\ & D \end{aligned}$	$\begin{aligned} & \pm .015^{\prime \prime} \\ & \pm .040^{\prime \prime} \\ & \pm .050 \end{aligned}$	All Sizes	$\pm .00500 "$
SLOTP	Plastic, Polyester/Vinyl			All Sizes	$\pm .015{ }^{\prime \prime}$		$\begin{aligned} & \pm .00003 " \\ & \pm .00005 " \\ & \pm .00008 " \\ & \pm .00010 " \\ & \pm .00015 " \\ & \pm .00020 " \\ & \pm .00025 " \\ & \pm .00038 " \\ & \pm .00050 " \\ & \pm .00063 " \\ & \pm .00075^{\prime \prime} \\ & \pm .00100 " \\ & \pm .00125 " \\ & \pm .00150 " \\ & \pm .00200 " \\ & \pm .00250 " \\ & \pm .00300 " \end{aligned}$

SLOT SIZE	
SHIM	(D) $\times(E)$
Class AA (1.5" $\times 1.5$ ")	5/16" \times. 728 "
Class A (2" $\times 2$ ")	$\begin{aligned} & \text { SLOT: } \\ & \text { 5/8" } \times 1-9 / 32 " \end{aligned}$
	SLOTC, SLOTP: $\text { 5/8" } \times 1-3 / 16 "$
Class B (3" $\times 3$ ")	$\begin{aligned} & \text { SLOT: } \\ & 7 / 8^{\prime \prime} \times 2-1 / 8 " \end{aligned}$
	SLOTC, SLOTP: $3 / 4 " \times 1-11 / 16 "$
Class C (4" $\times 4$ ")	1-1/4" $\times 2-3 / 4 "$
Class D ($5^{\prime \prime} \times 5^{\prime \prime}$)	1-5/8" $\times 3-5 / 8 "$

HUYETT.COM • 785-392-3017

FLAT SHIM STOCK - METAL

DESCRIPTION

Flat shim stock is easy to use and versatile. It is available in sheets and offered in a variety of materials. It is easily cut to fit your specific application.

HOW TO IDENTIFY

1. Measure width (A).
2. Measure length (B).
3. Measure thickness (C).
4. Build the part number from the chart on the next page.

FLAT METAL SHIM STOCK TOLERANCES					
MATERIAL		WIDTH (A)		LENGTH (B)	
(Prefix)	(Material/Finish)	(Size Range)	(Tolerance)	(Size Range)	(Tolerance)
FLT-\#\#\#	Carbon Steel, Plain*	$\begin{aligned} & 6 " \\ & 8^{\prime \prime} \end{aligned}$	$\begin{aligned} & \pm .060 " \\ & \pm .075^{\prime \prime} \end{aligned}$	$\begin{aligned} & 12^{\prime \prime} \\ & 18-25 " \end{aligned}$	$\begin{aligned} & \pm .075^{\prime \prime} \\ & \pm .060 " \end{aligned}$
FLT-\#\#\#-BR	Brass, Plain	$\begin{aligned} & 6 " \\ & 8 " \end{aligned}$	$\begin{aligned} & \pm .060 " \\ & \pm .063 " \end{aligned}$	$\begin{aligned} & 12-18 " \\ & 25 " \end{aligned}$	$\begin{aligned} & \pm .060 " \\ & +3 /-.500 " \end{aligned}$
FLT-\#\#\#-BT	Carbon Steel, Blue Tempered (1095)	All Sizes	$\pm .060 "$	All Sizes	+3/-.500"
FLT-\#\#\#-CU	Copper, Plain	All Sizes	$\pm .010{ }^{\prime \prime}$	All Sizes	+.500/-.250"
FLT-\#\#\#-PB	Bronze, Plain	All Sizes	$\pm .010{ }^{\prime \prime}$	All Sizes	+.250/-.125"
FLT-\#\#\#-SS	Stainless Steel, Plain	$\begin{aligned} & \text { 6" } \\ & 8 " \end{aligned}$	$\begin{aligned} & \pm .075^{\prime \prime} \\ & \pm .010^{\prime \prime} \end{aligned}$	$\begin{aligned} & 12 " \\ & 25 " \end{aligned}$	$\begin{aligned} & \pm .031 " \\ & \pm .075 " \end{aligned}$

FhAT SHIN STOCK = METAL

HOW TO BUILD A PART NUMBER
FLT- $\theta 612$ O12-BR

CODE	WIDTH
01	1.50"
04	4.00"
05	5.00"
06	6.00 "
08	8.00"
10	10.00"
12	12.00 "
20	20.00"
21	21.00"

PUNCHING: HOLES IN SHIM STOCK

Cut a piece of shim stock to size and place it beneath the block needing shimmed. Use a transfer punch to mark any hole positions. Using a shim stock hole punch set, place the shim stock in the punch block/die set. Maintain consistent pressure on the shim to keep it from moving, remove the transfer punch, install the shim punch, and punch the hole for a perfect fit.

CODE	LENGTH
12	$12.00^{\prime \prime}$
18	$18.00^{\prime \prime}$
20	$20.00^{\prime \prime}$
24	$24.00^{\prime \prime}$
25	$25.00^{\prime \prime}$
40	$40.00^{\prime \prime}$
50	$50.00^{\prime \prime}$
51	$51.00^{\prime \prime}$

ITEM SUFFIX

THICKNESS

HUYETT.COM • 785-392-3017

FLAT SHIM STOCK - PLASTIC

DESCRIPTION

Available in a wide range of thicknesses, color coded plastic shim stock is easy to identify as each sheet color represents a specific thickness. It can be cut easily with scissors and combined to shim just about any thickness needed for your application.

HOW TO IDENTIFY

1. Measure width (A).
2. Measure length (B).
3. Measure thickness (C) or match color.
4. Build the part number from the chart on the next page.

FLAT PLASTIC SHIM STOCK TOLERANCES

MATERIAL			UIDTH (A)	LENGTH (B)	
(Prefix)	(Material/Finish)	(Size Range)	(Tolerance)	(Size Range)	(Tolerance)
FLT-\#\#\#-PL	Plastic, Plain	All Sizes	$\pm .030$ "	All Sizes	$\pm .030 "$

High quality plastic shim stock is rust-proof and corrosion-resistant for use in fixtures or other machine application where steel would corrode. It is less expensive than metal shim stock, non-magnetic, and will not mar surfaces or conduct electricity.

HOW TO BUILD A PART NUMBER

LAMINATIED FLAT SHIM STOCK

DESCRIPTION

Common in tool rooms and machine shops, simply peel away layers to achieve the required thickness. Material may be cut, sawed, stamped, milled, or bored to desired configurations.

HOW TO IDENTIFY

1. Measure width (A).
2. Measure length (B).
3. Measure thickness (C).
4. Determine Class 1 or Class 2 layer thickness.
5. Build the part number from the chart on the next page.

PREFIX MATERIAL/FINISH

LAM-\#\#\#-AI $=$ ALUMINUM, PLAIN CLASS 1
LAM-\#\#\#-A2 $=$ ALUMINUM, PLAIN CLASS 2
LAM-\#\#\#-B1 = BRASS, PLAIN CLASS 1
LAM-\#\#\#-B2 $=$ BRASS, PLAIN CLASS 2
LAM-\#\#\#-P1 = CARBON STEEL, PLAIN* CLASS 1

LAM-\#\#\#-P2 $=$ CARBON STEEL, PLAIN* CLASS 2 LAM-\#\#\#-SI $=$ STAINLESS STEEL, PLAIN CLASS 1 LAM-\#\#\#-S2 $=$ STAINLESS STEEL, PLAIN CLASS 2 Material/finish combinations may not be available in all sizes.

LAMINATED FLAT STOCK TOLER,ANCES							
MATERIAL		UIDTH (A)		LENGTH (B)		THICKNESS (C)	
(Prefix)	(Material/Finish)	(Size Range)	(Tolerance)	(Size Range)	(Tolerance)	(Size Range)	(Tolerance)
LAM-\#\#\#-A1	Aluminum, Plain Class 1 (.0020")	All Sizes	$\pm .005{ }^{\prime \prime}$	All Sizes	$\pm .250{ }^{\prime \prime}$	$\begin{aligned} & .0060-.0150 " \\ & .0160^{\prime \prime} \\ & .0210^{\prime \prime} \end{aligned}$	$\begin{aligned} & +.0015 /-.0009 " \\ & +.0015 /-.0010 " \\ & +.0020 /-.0010 " \end{aligned}$
LAM-\#\#\#-A2	Aluminum, Plain Class 2 (.0030")		E	<NE		$\begin{aligned} & .0320^{\prime \prime} \\ & .0330^{\prime \prime} \end{aligned}$	$\begin{aligned} & +.0030 /-.0010 " \\ & +.0030 /-.0020 \end{aligned}$
LAM-\#\#\#-B1	Brass, Plain Class 1 (.0020")		Class $1=$	" Thick Lay		$\begin{aligned} & .0620-.0930 " \\ & .0940 " \end{aligned}$	$\begin{aligned} & +.0060 /-.0020 \\ & +.0090 /-.0030 \end{aligned}$
LAM-\#\#\#-B2	Brass, Plain Class 2 (.0030")		Class $2=.0$	Thick Lay		$\begin{aligned} & .1250 " \\ & .1870 " \\ & .2500 " \end{aligned}$	$\begin{aligned} & +.0120 /-.0030 " \\ & +.0180 /-.0040 " \\ & +.0250 /-.0050 " \end{aligned}$
LAM-\#\#\#-P1	Carbon Steel, Plain* Class 1 (.0020")		determine divide th	number of la al thickness		.3750"	+.0250/-.0250"
LAM-\#\#\#-P2	Carbon Steel, Plain* Class 2 (.0030")			LE			
LAM-\#\#\#-S1	Stainless Steel, Plain Class 1 (.0020")		" Total	ess			
LAM-\#\#\#-S2	Stainless Steel, Plain Class 2 (.0030")		.0020" Cl				

Dimensions listed are nominal and may not divide evenly.

LAVINTATED FLAT SHIN STOCK

HOW TO BUILD A PART NUMBER
-B2
CHOOSE YOUR MATERIAL \& CLASS.

CODE	MATERIAL
-A1	Aluminum, Plain Class $1\left(.0020^{\prime \prime}\right)$
-A2	Aluminum, Plain Class $2\left(.0030^{\prime \prime}\right)$
-B1	Brass, Plain Class 1 (.0020")
-B2	Brass, Plain Class 2 (.0030")
-P1	Carbon Steel, Plain* Class 1 (.0020")
-P2	Carbon Steel, Plain* Class 2 (.0030")
-S1	Stainless Steel, Plain Class 1 (.0020")
-S2	Stainless Steel, Plain Class 2 (.0030")

L.AMIN,ATED FLAT STOCK

PROVIDES THE ADVANTAGE OF CREATING COMPLIC,ATED

For simple or complex designs, laminated flat shim stock allows you to cut, punch, saw, stamp, mill, or shear shims to just about any size and shape, along with the flexibility of being able to remove thin layers to achieve the thickness you need. Save money by reducing inventory, increase efficiency by making quick adjustments during assembly, and prevent contaminants from finding their way between stacked shims.
For best results, laminated shims should not be "ground round" while deburring in order to maintain uniformity and parallel faces.

DON'T SEE WHAT YOU'RE LOOKING FOR? CONTACT SALES@HUYETT.COM OR CALL 785-392-3017

CUSTOMIZE YOUR APPLICATION

SHIMS IN THE THICKNESS YOU NEED WITHOUT CREATING

HUYETT.COM • 785-392-3017

ROLLED SHIM STOCK - IMPERIAL

DESCRIPTION

Shim stock is used to solve alignment and leveling problems within machinery. Rolled shim stock is simple to use and available in a variety of materials for a wide range of applications.

HOW TO IDENTIFY

1. Measure width (A).
2. Measure length (B).
3. Measure thickness (C).
4. Build the part number from the chart on the next page.

PREFIX MATERIAL/FINISH

ROLLED SHIM STOCK TOLERANCES					
MATERIAL		WIDTH (A)		LENGTH (B)	
(Prefix)	(Material/Finish)	(Size Range)	(Tolerance)	(Size Range)	(Tolerance)
RL-\#\#\#	Carbon Steel, Plain*	All Sizes	$\pm .005^{\prime \prime}$	All Sizes	$\pm .250{ }^{\prime \prime}$
RL-\#\#\#-AL	Aluminum, Plain	All Sizes	$\pm .005{ }^{\prime \prime}$	All Sizes	$\pm .250 "$
RL-\#\#\#-BR	Brass, Plain	All Sizes	$\pm .005{ }^{\prime \prime}$	All Sizes	$\pm .250 "$
RL-\#\#\#-BT	Carbon Steel, Blue Tempered (1095)	All Sizes	$\pm .00{ }^{\prime \prime}$	All Sizes	$\pm .250{ }^{\prime \prime}$
RL-\#\#\#-CU	Copper, Plain	All Sizes	$\pm .005{ }^{\prime \prime}$	All Sizes	$\pm .250 "$
RL-\#\#\#-NI	Nickel, Plain	All Sizes	$\pm .005{ }^{\prime \prime}$	All Sizes	$\pm .250 "$
RL-\#\#\#-PB	Bronze, Plain	All Sizes	$\pm .010{ }^{\prime \prime}$	All Sizes	+.500/-.250"
RL-\#\#\#-S6	316 Stainless Steel, Plain	All Sizes	$\pm .005{ }^{\prime \prime}$	All Sizes	$\pm .250 "$
RL-\#\#\#-SS	Stainless Steel, Plain	All Sizes	$\pm .005{ }^{\prime \prime}$	All Sizes	$\pm .250{ }^{\prime \prime}$

HOW TO BUILD A PART NUMBER

WHY USE ROLLED SHIM STOCK?

"C.AN'T I JUST USE ALUMINUM FOIL AND FOLD IT A FEW TIMES?"

While it might seem like aluminum foil would be a suitable substitution for rolled shim stock, aluminum foil sold on the shelves in grocery stores is more malleable than shim stock and may compress, deform, and tear over time.

Industrial strength rolled shim stock is toleranced, consistent in thickness, and comes in a variety of materials for many applications. To avoid corrosion and reduce wear during use, choose shim stock material that matches your application.

In the long run, aluminum foil, match books, playing cards, guitar picks, plastic baggies, aluminum cans, and newspapers, are not acceptable shim substitutes.

ROL-ED SHIU STOCK - MEIRIC

DESCRIPTION

Shim stock is used to solve alignment and leveling problems within machinery. Rolled shim stock is simple to use and available in a variety of materials for a wide range of applications.

HOW TO IDENTIFY

1. Measure length (B).
2. Measure thickness (C).
3. Build the part number from the chart on the next page.

PREFIX MATERIAL/FINISH
RL-\#\#\#-M = CARBON STEEL, PLAIN*
RL-\#\#\#-MB $=$ BRASS, PLAIN
RL-\#\#\#-MS = STAINLESS STEEL, PLAIN
Material/finish combinations may not be available in all sizes.

```
DON'T SEE WHAT YOU'RE LOOKING FOR? CONTACT SALES@HUYETT.COM OR CALL 785-392-3017
```

ROLLED SHIM STOCK TOLERANCES							
MATERIAL		WIDTH (\mathbf{A})		LENCTH (B)		THICKNESS (C)	
(Prefix)	(Material/Finish)	(Size Range)	(Tolerance)	(Size Range)	(Tolerance)	(Size Range)	(Tolerance)
RL-\#\#\#-M	Carbon Steel, Plain*	All Sizes	+0.010/-0 mm	All Sizes	$\pm 0.250 \mathrm{~mm}$	All Sizes	$\pm 5 \%$
RL-\#\#\#-MB	Brass, Plain	All Sizes	+0.010/-0 mm	All Sizes	$\pm 0.250 \mathrm{~mm}$		
RL-\#\#\#-MS	Stainless Steel, Plain	All Sizes	+0.010/-0 mm	All Sizes	$\pm 0.250 \mathrm{~mm}$		

APPLICATION

ROLLED SHIM STOCK IS SPRING STEEL UNDER TENSION, SO WORKING WITH IT C,AN BE TRICKY AS IT ALW,AYS SEEMS TO W,ANT TO RECOIL TO ITS ROLLED UP STATE

HERE ARE A COUPLE OF IDEAS TO CONSIDER FOR STORING IT TO
MAKE IT EASIER TO USE

For thinner material that behaves like aluminum foil, try hanging it overhead to save space.

For thicker stuff, keep it rolled up in a wood or cardboard box with a slit you can feed it through. Secure the other end with a couple of radiused wood blocks, machine screws, and wing nuts.

-
-ROL-ED SHIN STOCK - METRIC

HOW TO BUILD A PART NUMBER

4θ	
CHOOSE YOUR THICKNESS,	
DE	THICKNESS
	0.05 mm
	0.10 mm
	0.15 mm
	0.20 mm
	0.25 mm
	0.30 mm
	0.40 mm
	0.50 mm
	0.65 mm
	0.80 mm

CHOOSE YOUR MATERIAL.

CONSIDER USING: BRASS

The type of metal you use for shimming will depend on your application, but there are some benefits to using brass. Though harder than copper and bronze, brass is a malleable metal that can be easily manipulated and formed, making it versatile for shimming fixtures and aligning machinery.
It has a high resistance to corrosion which makes it suitable for use in humid or wet environments. It is a good conductor of heat and electricity, but is not magnetic, it has a low friction rate that prevents sparking, and is easily recycled. Additionally, brass can be used in sterile environments as it has an inherent ability to efficiently destroy harmful microbes and bacteria.

WHEN CUTTING THIN SHIM STOCK, TRY USING A GUILLOTINE STYLE PAPER CUTTER INSTEAD OF SCISSORS OR SHEARS TO GET FASTER RESULTS WITH CLEANER EDGES

Over 100,000 Industrial Fasteners \& Components, and Premium Lifting Hardware

PINS \&
WIREFORMS

GREASE FITTINGS \& ACCESSORIES

RETAINING RINGS, CLIPS,
COLLARS, WASHERS, \& SHIMS

ENGINEERED
FASTENERS

KEY STOCK \& MACHINE KEYS

PREMIUM LIFTING HARDWARE

PROUD DISTRIBUTOR DF

(H) Herititase

Hose Clamps, Bridge Pins, Cotter Pins, Hitch Pins, Shaft Collars, \& Grease Fittings

MAK-A-KI:Y

Precision Key Stock

 \& Machine Keys

Lifting Eye Bolts \& Nuts, Turnbuckles, Turnbuckle Ends, Rod Ends, Shackles, Hooks, \& Rope \& Chain Hardware

hANDITHEK
 a big name in small parts
 EXPANOPIN

Ready-Made \& Custom
Fastener Assortments \& Kits

TECsERIES

DRIEOK. ARaymond:

Groove Pins
1 -

Speed Nuts, Expansion Nuts, U-Nuts, Self-Thread Lock Nuts, Trim \& Panel Clips, Palnut PushOns, \& Nut/Bolt Assemblies

Clevis Pins, Lanyards,
\& Helical Spring Lock Washers

SPIROL
A LINCOLN

Grease Fittings, Grease Guns, Lubrication \& Fluid Handling

Coiled Spring Pins,
Slotted Spring Pins, Spacers, \& Thrust Washers
\& Management Systems

Threaded Inserts, Studs, Rivets, \& Tools

DISC-LOCK

Single-Use, Heavy Duty,
Engineered Self-Locking Washers
\& Safety Wheel Nuts
(RROTOR CLIP
() Shakeproof group

HUYETT.COM

C. ORDER STATUS

Know if your order is processing, complete, or partially shipped.

E
KNOWLEDGE VAULT
Product training, best practices, and the most comprehensive catalogs in the industry.

FREE MTRs*
Online. All the time. Download today.

ORDER TRACKING
Track your order by clicking on the tracking number in order details.
 SHIP DATE
Confirm your carrier and see the expected ship date.

CUSTOMER SPECIFIC PRICING
Login today for great prices on high quality fasteners.

QUANTITY BREAKS
Stock up on frequently used parts to save time and money.

SHAFT COLLAR FEATURES

Shaft collars are machine components found in many power transmission applications, most notably motors and gear boxes. They are used as mechanical stops, locating components, or bearing faces. They install easily and are available in a variety of styles and materials.

DESIGN CONSIDERATIONG

POSITIONING \& MATERIALS

SET COLLARS ARE SECURED TO UNH,ARDENED SHAFFTS WITH A SET SCREW THAT WILL PENETRATE AND MAR THE SHAFT SURFACE

INSTALLATION REQUIREMENTS

SHAFT COLLARS ARE EASILY INSTALLED WITH A HEX KEY TOOL

AXIAL INSTALLATION

SET COLLARS AND SINGLE-SPLIT COLLARS ARE INSTALLED AXI,ALLY BY SLIDING OVER THE SHAAFT

RADIAL INSTALLATION

DOUBLE-SPLIT COLLARS ARE INSTALLED RADIALLY WITHOUT DISASSEMBLING THE COMPONENT

PRECISION FACING

H.AVING A PERPENDICULAR FACE IS CRITICAL FOR THE COLLAR TO HOLD OTHER COMPONENTS IN PLACE

BALANCE

DOUBLE-SPLIT COLLARS ARE IDEAL FOR HIGH RPM APPLICATIONS BECAUSE THE OPPOSING SCREWS B,AL,ANCE EACH OTHER
\qquad

DON'T CLOSE THE GAP

When tightening a split collar, the edges of the split should not touch when fully tightened. If the split is completely closed the collar is too large and will not clamp on the shaft.

SHAFT COLLAR TYPES

SET

Set collars are the oldest type of shaft collars and use a hardened set screw to penetrate the surface of an unhardened shaft to achieve grip. They are ideal for holding spacers, bearings, and sprocket hubs in place.

PAGE 15θ

THREADED

Threaded bore collars are used in threaded shaft applications where precise positioning is required or where high axial loads will be encountered. The threads provide a positive mechanical stop.

SINGLE-SPLIT

Single-split collars are used on round shafts, bars, and tubes. They use friction to grip and are more secure than set collar designs.

PAGE 154

DOUBLE-SPLIT

Double-split collars allow installation without disassembling machinery. They provide superior grip and are ideal for applications where access is limited. Opposing screws balance each other in rotating applications.

PAGE 154

Hex keys are a simple six-sided, L-shaped tool used to tighten or loosen socket head screws. They are more commonly known as "Allen Wrenches," a proprietary name of Apex Tool Group, LLC.

PAGE 162

HEX KEYS

Set Screws

Cap Screws
hUYETT.COM

WHICH SHAFT COLLAR DO I NEED?

Set collars are economical, install axially, and are used on unhardened shafts. They are secured with a set screw.

Single-split collars provide better holding power than set collars, and must be installed axially.

Double-split collars install easily without disassembling machinery and provide excellent clamping power.

Single- or double-split threaded shaft collars provide precision placement and tolerate extreme axial forces.

QUICK RIEFERENCE GUIDE

Shaft collars are used in machine applications to secure or position components on shafts. They can be used as mechanical stops, stroke limiters, or bearing holders. A variety of styles provides solutions for almost any power transmission application.

$\left.\begin{array}{|l|l|l|l|l|}\hline & \text { SET } & \text { SINGLE-SPLIT } & \text { DOUBLE-SPLIT } & \text { THREADED } \\ \hline \text { COMMON } & \begin{array}{l}\text { Set Screw Collar; Solid } \\ \text { Clamping Collar; Set } \\ \text { Shaft Collar }\end{array} & \begin{array}{l}\text { Split Hub Collar; Clamp } \\ \text { Collar }\end{array} & \begin{array}{l}\text { Two-piece Clamp-on } \\ \text { Collar }\end{array} & \text { Threaded Clamp Collar } \\ \text { APPLICABLE } & \begin{array}{l}\text { There are no applicable } \\ \text { standards; however, } \\ \text { most manufacturers } \\ \text { follow similar designs. }\end{array} & \begin{array}{l}\text { There are no applicable } \\ \text { standards; however, } \\ \text { most manufacturers } \\ \text { follow similar designs. }\end{array} & \begin{array}{l}\text { There are no applicable } \\ \text { standards; however, } \\ \text { most manufactures } \\ \text { follow similar designs. }\end{array} & \begin{array}{l}\text { There are no applicable } \\ \text { standards; however, } \\ \text { most manufacturers } \\ \text { follow similar designs. }\end{array} \\ \hline \text { FABRICATION } & \begin{array}{l}\text { Material is bored and } \\ \text { single-point faced. }\end{array} & \begin{array}{l}\text { Material is bored and } \\ \text { single-point faced. }\end{array} & \begin{array}{l}\text { Material is bored and } \\ \text { single-point faced. }\end{array} & \begin{array}{l}\text { Material is bored and } \\ \text { single-point faced. }\end{array} \\ \hline \text { HOW TO } & & \begin{array}{l}\text { Bore (inside diameter); } \\ \text { solid one-piece design } \\ \text { with set screw. }\end{array} & \begin{array}{l}\text { Bore (inside diameter); } \\ \text { one-piece design with } \\ \text { a cut through one } \\ \text { side and a relief cut } \\ \text { opposite; clamped with } \\ \text { a cap screw. }\end{array} & \begin{array}{l}\text { Bore (inside diameter); } \\ \text { two-piece design with a } \\ \text { cap screw on each side. }\end{array}\end{array} \begin{array}{l}\text { Fine or coarse threaded } \\ \text { bore (inside diameter); } \\ \text { single- or double-split } \\ \text { design. }\end{array}\right]$

(1)A shaft collar's size is determined by its bore and is sized to match the shaft diameter. For example, if your shaft size is 1 " then you would want a 1 " shaft collar.

To use this size chart, align the inside diameter of your shaft collar against the "zero" line on the right edge. Visually note where the left edge of the inside diameter falls and follow the line to the imperial measurement below or the metric measure above. Sixteenth measurements and single millimeters have been left off for clarity.

ALIGN THE RIGHT SIDE OF THE BORE OF THE collar to the right EDGE OF THE CIRCLE TO DETERMINE THE SIZE OF THE COLLAR

FOR QUICK IDENTIFICATION, THE NOMINAL SIZE OF HUYETT'S SHAFT COLLARS IS STAMPED ON THE FACE

SET - IMPERIAL

DESCRIPTION

Set collars are used in machine applications for securing components on shafts. They can be used for stroke limitations, positioning, or as mechanical stops. Because the set screw must penetrate the shaft, set collars are used only on unhardened shafts and when frequent adjustment is not a consideration.

HOW TO IDENTIFY

1. Verify solid style with set screw.
2. Measure bore (A).
3. Build the part number from the chart on the next page.

BORE (A) TOLERANCES

(Size Range)	(Tolerance)
$.1250-.1875^{\prime \prime}$	$+.0008 /+.0030^{\prime \prime}$
$.2500-1.1250^{\prime \prime}$	$+.0008 /+.0040^{\prime \prime}$
$1.1875-2.9375^{\prime \prime}$	$+.0008 /+.0060^{\prime \prime}$
$3.0000-6.0000^{\prime \prime}$	$+.0008 /+.0080^{\prime \prime}$

ADDITIONAL SIZES AND FINISHES MAY BE AVAILABLE UPON REQUEST

INSTALLING A SET COLLAR

SLIDE THE COLLAR AXI,ALLY ONTO THE SH,AFT

SET IN PLACE BY TIGHTENING THE SET SCREW

THE SET SCREW WILL PENETR,ATE THE SH,AFT SURFACE..

M,ARRING THE SHAFT SURFACE

Sシー METRIC

DESCRIPTION

Set collars are used in machine applications for securing components on shafts. They can be used for stroke limitations, positioning, or as mechanical stops. Because the set screw must penetrate the shaft, set collars are used only on unhardened shafts and when frequent adjustment is not a consideration.

HOW TO IDENTIFY

1. Verify solid style with set screw.
2. Measure bore (A).
3. Build the part number from the chart on the next page.

PREFIX MATERIAL/FINISH
SCM-\#\#\# $=$ CARBON STEEL, PLAIN*
SCM-\#\#\#-BO = CARBON STEEL, BLACK OXIDE
SCM-\#\#\#-SS = STAINLESS STEEL, PLAIN
SCM-\#\#\#-ZC = CARBON STEEL, ZINC CLEAR

ADDITIONAL SIZES AND FINISHES MAY BE AVAILABLE UPON REQUEST

BORE (A) TOLERANCES
(Size Range)
$2 \mathrm{~mm}-26 \mathrm{~mm}$
$28 \mathrm{~mm}-200 \mathrm{~mm}$
(Tolerance)
+0.10/+0.02 mm
$+0.12 /+0.02 \mathrm{~mm}$

FLARE UPS \$ BURNS

THE SET SCREW IN A SET COLLAR WILL CREATE A
"FLARE UP" OR "BURN" WHEN INSTALLED
THIS MAKKES SUBSEQUENT ADJUSTMENTS AND REPOSITIONING DIFFICULT BECAUSE THE SET SCREW WILL SEEK ITS ORIGIN,AL POSITION

CLOSE UP OF A FLARE UP

SPLIT - IMPERIAL

DESCRIPTION

Split collars provide greater clamping force than set collars by squeezing the shaft rather than penetrating it with a set screw. Double-split collars provide more clamping force than single-split collars and have the added feature of being able to be installed radially and clamp from both sides.

HOW TO IDENTIFY

1. Verify single- or double-split style.
2. Measure bore (A).
3. Build the part number from the chart on the next page.

PREFIX MATERIAL/FINISH

```
SCl-####-AL = ALUMINUM, PLAIN
SCI-####-BO = CARBON STEEL, BLACK OXIDE
SCl-####-NY = NYLON, PLAIN
SCI-####-SS = STAINLESS STEEL, PL,AIN
```


FACT AND FRICTION

A thicker collar is not necessarily a stronger collar. The same size cap screw in a thicker collar will expend more energy bending the collar before it actually applies clamping force.

ZINC PLATING AND
OTHER FINISHES AVAILABLE FOR ALL PARTS SEE PAGE 16

HOW TO BUILD A PART NUMBER SC2-1937-AL

1/8" to 4-15/16"

CHOOSE YOUR BORE,			
CODE	BORE	CODE	BORE
0125	.1250" (1/8)	2000	$2.0000{ }^{\prime \prime}(2)$
0187	.1875" (3/16)	2062	2.0625" (2-1/16)
0250	.2500" (1/4)	2125	2.1250 " (2-1/8)
0312	.3125" (5/16)	2187	2.1875 " (2-3/16)
0375	.3750" (3/8)	2250	2.2500 " (2-1/4)
0437	.4375" (7/16)	2312	2.3125 " (2-5/16)
0500	.5000" (1/2)	2375	2.3750" (2-3/8)
0562	.5625" (9/16)	2437	2.4375 " (2-7/16)
0625	.6250" (5/8)	2500	2.5000" (2-1/2)
0687	.6875" (11/16)	2562	2.5625 " (2-9/16)
0750	.7500" (3/4)	2625	2.6250" (2-5/8)
0812	.8125" (13/16)	2687	2.6875" (2-11/16)
0875	.8750" (7/8)	2750	$2.7500{ }^{\prime \prime}(2-3 / 4)$
0937	.9375" (15/16)	2812	2.8125" (2-13/16)
1000	1.0000 " (1)	2875	2.8750" (2-7/8)
1062	1.0625" (1-1/16)	2937	2.9375" (2-15/16)
1125	1.1250" (1-1/8)	3000	3.0000" (3)
1187	1.1875" (1-3/16)	3187	3.1875" (3-3/16)
1250	1.2500" (1-1/4)	3250	3.2500 " (3-1/4)
1312	1.3125 " (1-5/16)	3437	3.4375 " (3-7/16)
1375	1.3750" (1-3/8)	3500	3.5000 " (3-1/2)
1437	$1.4375{ }^{\prime \prime}(1-7 / 16)$	3562	3.5625 " (3-9/16)
1500	1.5000" (1-1/2)	3687	3.6875" (3-11/16)
1562	$1.5625^{\prime \prime}$ (1-9/16)	3750	$3.7500{ }^{\prime \prime}(3-3 / 4)$
1625	1.6250" (1-5/8)	3812	3.8125" (3-13/16)
1687	1.6875" (1-11/16)	3875	3.8750" (3-7/8)
1750	1.7500" (1-3/4)	3937	3.9375" (3-15/16)
1812	1.8125" (1-13/16)	4000	4.0000" (4)
1875	1.8750" (1-7/8)	4437	4.4375" (4-7/16)
1937	1.9375" (1-15/16)	4937	4.9375" (4-15/16)

DON'T SEE WHAT YOU'RE LOOKING FOR? CONTACT SALES@HUYETT.COM OR CALL 785-392-3017

MATERIAL SUFFIX

-AL
CHOOSE YOUR MATERIAL.

CODE	MATERIAL/FINISH
-AL	Aluminum, Plain
-BO	Carbon Steel, Black Oxide
-NY	Nylon, Plain
-SS	Stainless Steel, Plain

TORQUE AND BALANANE
With a cap screw on each side, all of the torque from each screw is applied to the clamping force. Additionally, the two screws will balance each other in high rpm applications.

CLEAN UP

Nylon shaft collars with stainless steel cap screws tolerate frequent wash ups. They are perfect for food processing and pharmaceutical applications.

SPM - METRIC

DESCRIPTION

Split collars provide greater clamping force than set collars by squeezing the shaft rather than penetrating it with a set screw. Double-split collars provide more clamping force than single-split collars and have the added feature of being able to be installed radially and clamp from both sides.

HOW TO IDENTIFY

1. Verify single- or double-split style.
2. Measure bore (A).
3. Build the part number from the chart on the next page.

PREFIX MATERIAL/FINISH

```
SCMI-### = CARBON STEEL, PLAIN*
SCMI-###-AL = ALUMINUM, PLAIN
SCMI-###-BO = CARBON STEEL, BLACK OXIDE
SCMI-###-SS = STAINLESS STEEL, PLAIN
```

DOUBLE-SPLIT


```
PREFIX MATERIAL/FINISH
SCM2-### = CARBON STEEL, PLAIN*
SCM2-###-AL = ALUMINUM, PLAIN
SCM2-###-BO = CARBON STEEL, BLACK OXIDE
SCM2-###-SS = STAINLESS STEEL, PLAIN
SCM2-###-ZC = CARBON STEEL, ZINC CLEAR
```

BORE (A) TOLERANCES

(Size Range)	(Tolerance)
Single-split \& Double-split	
$3 \mathrm{~mm}-5 \mathrm{~mm}$	$+0.01 /+0.080 \mathrm{~mm}$
$6 \mathrm{~mm}-24 \mathrm{~mm}$	$+0.02 /+0.012 \mathrm{~mm}$
$25 \mathrm{~mm}-75 \mathrm{~mm}$	$+0.02 /+0.150 \mathrm{~mm}$
$80 \mathrm{~mm}-100 \mathrm{~mm}$	$+0.02 /+0.200 \mathrm{~mm}$

APPLICATION

USE DOUBLE-SPLIT COLLARS WHERE COMPONENTS WILL NOT ALLOW AXI.AL INST.ALL.ATION

ZINC PLATING AND OTHER FINISHES AVAILABLE FOR ALL PARTS SEE PAGE 16

HOW TO BUILD A PART NUMBER
LEAVE BLANK FOR CARBON STEEL, PLAIN*

OR SELECT MATERIAL AND FINISH FROM THE LIST BELOW

MATERIAL SUFFIX

3 mm to 100 mm

CHOOSE YOUR BORE,

CODE	BORE	CODE	BORE
003	3.00 mm	028	28.00 mm
004	4.00 mm	030	30.00 mm
005	5.00 mm	032	32.00 mm
006	6.00 mm	034	34.00 mm
007	7.00 mm	035	35.00 mm
008	8.00 mm	036	36.00 mm
009	9.00 mm	038	38.00 mm
010	10.00 mm	040	40.00 mm
011	11.00 mm	042	42.00 mm
012	12.00 mm	045	45.00 mm
013	13.00 mm	048	48.00 mm
014	14.00 mm	050	50.00 mm
015	15.00 mm	054	54.00 mm
016	16.00 mm	055	55.00 mm
017	17.00 mm	060	60.00 mm
018	18.00 mm	065	65.00 mm
019	19.00 mm	070	70.00 mm
020	20.00 mm	075	75.00 mm
021	21.00 mm	080	80.00 mm
022	22.00 mm	085	85.00 mm
023	23.00 mm	090	90.00 mm
024	24.00 mm	095	95.00 mm
025	25.00 mm	100	100.00 mm

When tightened, the edges of the split should not touch. If the split is completely closed the collar is too large and will not securely clamp on the shaft.

THREADED

DESCRIPTION

Threaded bore shaft collars are useful in applications that require precise positioning or where high axial loads are encountered. The collar can be twisted on the shaft to an exact location and tightened without damaging shaft threads. The shaft threads also act as a positive mechanical stop preventing lateral movement.

HOW TO IDENTIFY

1. Verify threaded bore, thread style, and collar type.
2. Determine thread size (A).
3. Build the part number from the chart on the next page.

PREFIX MATERIAL/FINISH
$\begin{aligned} & \text { SINGLE-SPLIT, COARSE THREAD } \\ & \text { SCC1-\#\#\#\#-BO }=\text { Carbon Steel, Black Oxide } \\ & \text { SCC1-\#\#\#\#-SS }=\text { Stainless Steel, Plain }\end{aligned}$

SINGLE-SPLIT, FINE THREAD
SCF1-\#\#\#\#-BO = Carbon Steel, Black Oxide
SCF1-\#\#\#\#-SS = Stainless Steel, Plain
Material/finish combinations may not be available in all sizes.

AGSORTMEITH

Set Collar Metric DISP-SCM045		45 Pieces Carbon Steel, Black Oxide Display board included. Parts Only = DISP-SCM045R	
Parts Included	Bore	Size ($O D \times I D \times T$)	Quantity
SCM-012-BO	12 mm	$22 \mathrm{~mm} \times 12 \mathrm{~mm} \times 12 \mathrm{~mm}$	8
SCM-015-BO	15 mm	$25 \mathrm{~mm} \times 15 \mathrm{~mm} \times 12 \mathrm{~mm}$	8
SCM-020-BO	20 mm	$32 \mathrm{~mm} \times 20 \mathrm{~mm} \times 14 \mathrm{~mm}$	6
SCM-025-BO	25 mm	$40 \mathrm{~mm} \times 25 \mathrm{~mm} \times 16 \mathrm{~mm}$	6
SCM-030-BO	30 mm	$45 \mathrm{~mm} \times 30 \mathrm{~mm} \times 16 \mathrm{~mm}$	6
SCM-035-BO	35 mm	$56 \mathrm{~mm} \times 35 \mathrm{~mm} \times 16 \mathrm{~mm}$	6
SCM-040-BO	40 mm	$63 \mathrm{~mm} \times 40 \mathrm{~mm} \times 18 \mathrm{~mm}$	5

Single-split Imperial DISP-SC1-BO		42 Pieces Carbon Steel, Black Oxide Display board included. Parts Only = DISP-SC1-BOR	
Parts Included	Bore	Size ($O D \times 1 \mathrm{l} \times \mathrm{T}$)	Quantity
SC1-0187-BO	3/16"	$5 / 8^{\prime \prime} \times 3 / 16^{\prime \prime} \times 5 / 16^{\prime \prime}$	6
SC1-0250-BO	1/4"	$11 / 16^{\prime \prime} \times 1 / 4^{\prime \prime} \times 5 / 16^{\prime \prime}$	6
SC1-0312-BO	5/16"	$11 / 16^{\prime \prime} \times 5 / 16^{\prime \prime} \times 5 / 16^{\prime \prime}$	6
SC1-0375-BO	3/8"	$7 / 8^{\prime \prime} \times 3 / 8 " \times 11 / 32$ "	6
SC1-0437-BO	7/16"	$15 / 16^{\prime \prime} \times 7 / 16^{\prime \prime} \times 3 / 8{ }^{\prime \prime}$	5
SC1-0500-BO	1/2"	$1-1 / 8{ }^{\prime \prime} \times 1 / 2^{\prime \prime} \times 13 / 32$ "	5
SC1-0562-BO	9/16"	$1-5 / 16^{\prime \prime} \times 9 / 16^{\prime \prime} \times 7 / 16^{\prime \prime}$	5
SC1-0625-BO	5/8"	$1-5 / 16^{\prime \prime} \times 5 / 8^{\prime \prime} \times 7 / 16^{\prime \prime}$	4

Double-split Imperial DISP-SC2-BO		42 Pieces Carbon Steel, Black Oxide Display board included. Parts Only = DISP-SC2-BOR	
Parts Included	Bore	Size ($O D \times 1 \mathrm{x} \times \mathrm{T}$)	Quantity
SC2-0187-BO	3/16"	$5 / 8 " \times 3 / 16^{\prime \prime} \times 5 / 16^{\prime \prime}$	6
SC2-0250-BO	1/4"	$11 / 16^{\prime \prime} \times 1 / 4 " \times 5 / 16^{\prime \prime}$	6
SC2-0312-BO	5/16"	$11 / 16^{\prime \prime} \times 5 / 16^{\prime \prime} \times 5 / 16^{\prime \prime}$	6
SC2-0375-BO	3/8"	$7 / 8^{\prime \prime} \times 3 / 8^{\prime \prime} \times 11 / 32^{\prime \prime}$	6
SC2-0437-BO	7/16"	$15 / 16^{\prime \prime} \times 7 / 16^{\prime \prime} \times 3 / 8^{\prime \prime}$	5
SC2-0500-BO	1/2"	$1-1 / 8{ }^{\prime \prime} \times 1 / 2^{\prime \prime} \times 13 / 32$ "	5
SC2-0562-BO	9/16"	1-5/16" $\times 9 / 16^{\prime \prime} \times 7 / 16^{\prime \prime}$	5
SC2-0625-BO	5/8"	$1-5 / 16^{\prime \prime} \times 5 / 8^{\prime \prime} \times 7 / 16^{\prime \prime}$	4

LOOKING FOR A CUSTOM ASSORTMENT?
WE'LL WORK WITH YOU TO DEVELOP, PACKAGE, AND LABEL PARTS WITH YOUR BRAND

RETAINING RINGS, CLIPS, \& SPRINGS

Finding the Rings You Need is a Snap with Huyett

Huyett is a low overhead manufacturer and master distributor of a wide range of retaining rings, wire forms, and tools in both Imperial and Metric sizes. In fact, we feature the world's most complete inventory of retaining rings, washers, springs, clips, wire rings, wire forms, wave springs, locknuts, lockwashers, spiral rings, Eaton ${ }^{\text {TM }}$ rings, push-on rings, assortments, tools, and assembly components. Available in quantities of one and up, you can get 'em stacked, bagged, boxed, or rolled in spring steel or stainless steel, phosphate, zinc yellow, and more.

Snap Rings Internal \& External; Standard Duty \& Heavy Duty

Push-On Rings Internal \& External; Toothed, Round, \& Triangle; Grooveless

Circlips
E-Clips; C-Clips; Radial; Poodle; Interlocking

Spiral Rings Internal \& External; Light, Medium, \& Heavy Duty

Eaton ${ }^{\text {TM }}$ Rings Internal \& External; Light Duty; Notched

Wire Rings
External Square \& Round; Rectangular; Crimped

Your Master Distributor for
R. ROTOR CLIP

Disc; Shoulder; Finger; Wave; Compression

Great Prices • Low Minimums • Easy Ordering

RETAINING RINGS CATALOG

INCLUDES A COMPLETE LINE OF
AXIALLY \& RADIALLY INSTALLED RINGS, CLIPS, SELF-LOCKING PUSH-ON RINGS, SPIRAL RINGS, EATON ${ }^{\text {TM-STYLE RINGS, ASSORTMENTS, AND TOOLS }}$

The most comprehensive and complete inventory of inch and metric retaining rings and installation tools in the world. This catalog is bursting with education and product information. The breadth of knowledge ranges from interchange charts, measuring guides, material explanations, and the history of retaining rings. Product are available in spring or stainless steel material, with plain, phosphate, and zinc platings.
Visit huyett.com to request or download a copy today.

HUYETT.COM • 785-392-3017

HZX KEY - IMPERIAL

DESCRIPTION

An L-shaped bar with a hexagonal profile. Either end can be used to tighten or loosen socket head cap screws or set screws with hexagonal sockets. Hex key sizes are measured across parallel flats. They are more commonly known as "Allen Wrenches," a proprietary name of Apex Tool Group, LLC.

HOW TO IDENTIFY

1. Verify L-shaped hexagonal key.
2. Measure hex size (A).
3. Find the part number in the chart below.

PREFIX MATERIAL/FINISH
HK-ӨI $=$ COLD FINISHED 865θ ALLOY STEEL, BLACK OXIDE, SHORT ARM $H K-\theta 2=C O L D$ FINISHED 865θ ALLOY STEEL, BLACK OXIDE, LONG ARM HK-Ө3 = COLD FINISHED 615θ ALLOY STEEL, BLACK OXIDE, SHORT ARM $H K-\theta 4=C O L D$ FINISHED 615θ ALLOY STEEL, BLACK OXIDE, LONG ARM Material/finish combinations may not be available in all sizes.

LONG ARM/SHORT ARM REFERS TO THE LENGTH OF THE SHANK (C)

HOW TO BUILD A PART NUMBER

ARM TYPE

CODE	HEX SIZE	(C) SHANK LENGTH	
		HK-ө1, HK-ө3	HK-e2, HK-e4
0028	.028"	1.188" (1-3/16)	-
0035	.035"	1.188" (1-3/16)	-
0050	.050"	1.625 " (1-5/8)	2.875" (2-7/8)
0063	. 063 " (1/16)	1.750" (1-3/4)	3.000" (3)
0078	.078" (5/64)	1.875" (1-7/8)	3.125" (3-1/8)
0094	.094" (3/32)	2.000" (2)	3.375" (3-3/8)
0109	.109" (7/64)	2.125" (2-1/8)	3.500" (3-1/2)
0125	.125" (1/8)	2.313" (2-5/16)	3.750" (3-3/4)
0141	.141" (9/64)	2.313" (2-5/16)	3.875" (3-7/8)
0156	.156" (5/32)	2.500" (2-1/2)	4.125" (4-1/8)
0188	.188" (3/16)	2.750" (2-3/4)	4.500" (4-1/2)
0219	.219" (7/32)	3.000" (3)	4.875" (4-7/8)
0250	.250" (1/4)	3.250" (3-1/4)	5.250" (5-1/4)
0313	. 313 " (5/16)	3.750 " (3-3/4)	6.000" (6)

CODE	HEX SIZE	(C) SHANK LENGTH	
		HK-ө1, HK-ө3	HK- 2 2, HK- ${ }^{\text {e }}$
0375	.375" (3/8)	4.313" (4-5/16)	6.750" (6-3/4)
0438	.438" (7/16)	4.750" (4-3/4)	7.500" (7-1/2)
0500	.500" (1/2)	5.250" (5-1/4)	8.250" (8-1/4)
0563	.563" (9/16)	5.750" (5-3/4)	9.000" (9)
0625	.625" (5/8)	6.250 " (6-1/4)	9.750" (9-3/4)
0750	.750" (3/4)	7.250" (7-1/4)	11.250" (11-1/4)
0875	.875" (7/8)	8.250" (8-1/4)	12.750" (12-3/4)
1000	1.000" (1)	9.250" (9-1/4)	14.250" (14-1/4)
1125	1.125" (1-1/8)	10.250" (10-1/4)	-
1250	1.250" (1-1/4)	11.250" (11-1/4)	-
1375	1.375" (1-3/8)	12.250" (12-1/4)	-
1500	1.500 " (1-1/2)	13.250" (13-1/4)	-
1750	1.750" (1-3/4)	15.250" (15-1/4)	-

DESCRIPTION

An L-shaped bar with a hexagonal profile. Either end can be used to tighten or loosen socket head cap screws or set screws with hexagonal sockets. Hex key sizes are measured across parallel flats. They are more commonly known as "Allen Wrenches," a proprietary name of Apex Tool Group, LLC.

HOW TO IDENTIFY

1. Verify L-shaped hexagonal key.
2. Measure hex size (A).
3. Find the part number in the chart below.

PREFIX MATERIAL/FINISH
HKM-ӨI $=$ COLD FINISHED ALLOY STEEL, BLACK OXIDE, SHORT ARM $H K M-\theta 2=C O L D$ FINISHED ALLOY STEEL, BLACK OXIDE, LONG ARM Material/finish combinations may not be available in all sizes.

LONG ARM/SHORT ARM REFERS TO THE LENGTH OF THE SHANK (C)

TO ORDER CHOOSE YOUR ARM TYPE,

CODE	ARM TYPE
HKM-01-	Short Arm
HKM-02-	Long Arm

```
ZINC PLATING AND
```

ZINC PLATING AND
OTHER FINISHES
OTHER FINISHES
AYAILABLE FOR
AYAILABLE FOR
ALL PARTS
ALL PARTS
SEE PAGE 16

```
        SEE PAGE 16
```

HOW TO BUILD A PART NUMBER

BEARINGS FEATURES

Bearings are machine elements that support adjoining moving parts and allow them to move in a desired motion. This motion may be linear, rotational, or a combination of the two. Bearings facilitate the desired motion as much as possible by minimizing friction. They are categorized broadly according to the type of operation performed, the motions allowed, or the direction of the loads (force) applied to the parts.

APPLICATION

BEARING PREFIXES:
FB • FLANGE BEARING
SB • SLEEVE BEARING
TB • THRUST BEARING

BEABINGS TYPES

FLANGE

Flange bearings "support" a load. They allow the shaft to slide freely within the bearing. They are used in lower speed applications with lighter loads.

SLEEVE

Sleeve bearings typically handle radial loads. The sleeve allows the shaft to spin freely in the bearing.

PAGE 17θ

THRUST

Thrust bearings are long-wearing, washershaped bearings that allow axial loads and protect rotating mechanisms along a shaft.

PAGE 172

	COMMON NAMES	APPLICABLE STANDARDS	FABRICATION
$\frac{\text { uI }}{\frac{u}{z}}$	Bushing; Flange; Oilube ${ }^{\oplus}$; Oilite ${ }^{\circledR}$	SAE 841, vacuum impregnated with SAE 30 for sintered bronze. SAE 660 for cast bronze.	Formed, sintered, sized, and vacuum impregnated with oil. Cast bronze are formed in a mold.
	Plain Bearing; Journal Bearing; Mechanical Bushing; Oilube; Oilite	SAE 841, vacuum impregnated with SAE 30 for sintered bronze. SAE 660 for cast bronze.	Formed, sintered, sized, and vacuum impregnated with oil. Cast bronze are formed in a mold.
$\begin{aligned} & \hbar \\ & \underset{N}{2} \end{aligned}$	Thrust Washer; Bearing Thrust Washer; Oilube; Oilite	SAE 841, vacuum impregnated with SAE 30 for sintered bronze. SAE 660 for cast bronze.	Formed, sintered, sized, and vacuum impregnated with oil. Cast bronze are formed in a mold.

| HOW TO |
| :--- | :--- | :--- |
| IDENTIFY | | COMMON |
| :--- |
| USES |\quad COMMENTS

HUYETT.COM • 785-392-3017

FLANGE

DESCRIPTION

Flange bearings incorporate the designs of a sleeve bearing and a thrust bearing into one piece, eliminating the need to stock multiple parts. This bearing is able to withstand both radial and axial loads.

HOW TO IDENTIFY

1. Verify sleeve cylinder with flange at one end.
2. Measure inside diameter (B).
3. Measure outside diameter (A).
4. Measure length (L).
5. Find the part number in the chart below.

	(B)	(A)	(L)	(C)	(E)
ITEM	INSIDE	OUTSIDE	LENGTH	FLANGE	FLANGE
NUMBER	DIAMETER	DIAMETER		OD	THICKNESS

$1 / 8^{11} \underset{\text { Nominal }}{\times} 1 / 4^{\prime \prime}$					
FB-0408-04	.1260"	.2520"	.2500"	.3125"	. 0625 "
FB-0408-06	.1260"	.2520"	.3750"	.3125"	. 0625 "

$1 / 8^{11} \times 5 / 16^{11}$					
FB-0410-04	.1270"	.3150"	.2500"	. $3750{ }^{\prime \prime}$.0469"
FB-0410-06	.1270"	.3150"	.3750"	.3750"	.0469"

$3 / 16^{11} \times 5 / 16^{\text {Nominal }} \times$					
FB-0610-04	.1870"	.3130"	.2500"	. $3750{ }^{\prime \prime}$.0625"
FB-0610-02	.1890"	.3145"	.1250"	. $3750{ }^{\prime \prime}$.0469"
FBS-0035-02	.1890"	.3145"	.2500"	. $3750{ }^{\prime \prime}$.0469"
FBS-0035-03	.1890"	.3145"	.3750"	. $3750{ }^{\prime \prime}$.0469"
FB-0610-03	.1895"	.3140"	.1875"	.4375"	.0625"
FB-0610-05	.1895"	.3140"	.3125"	.4375"	.0625"
FB-0610-06	.1895"	.3140"	.3750"	.4375"	.0625"

ITEM NUMBER	$\begin{gathered} \text { (B) } \\ \text { INSIDE } \\ \text { DIAMETER } \end{gathered}$	$\begin{gathered} \text { (A) } \\ \text { OUTSIDE } \\ \text { DIAMETER } \end{gathered}$	(L) LENGTH	$\begin{gathered} \text { (C) } \\ \text { FLANGE } \\ O D \end{gathered}$	(E) FLANGE THICKNESS
FB-0610-08	.1895"	.3140"	.5000"	.4375"	.0625"
$3 / 16_{\text {Nominal }}^{11} \times 3 / 8^{11}$					
FB-0612-06	.1895"	. $3765^{\prime \prime}$.3750"	.4375"	.0625"
FB-0612-08	.1895"	. $3765^{\prime \prime}$.5000"	.4375"	.0625"

$1 / 4^{11} \times 3 / 8^{11}$ Nominal					
FB-0812-03	.2500"	.3810"	.1875"	.5000"	. $0625^{\prime \prime}$
FB-0812-04	.2500"	.3810"	.2500"	.5000"	. $0625^{\prime \prime}$
FB-0812-05	.2500"	.3810"	.3125"	.5000"	.0625"
FB-0812-06	.2500"	.3810"	.3750"	.5000"	.0625"
FB-0812-07	.2500"	.3810"	. $4375{ }^{\prime \prime}$.5000"	.0625"
FB-0812-08	.2500"	.3810"	.5000"	.5000"	.0625"
FB-0812-09	.2500"	.3810"	.5625"	.5000"	.0625"
FB-0812-11	.2500"	.3810"	.6875"	.5000"	. $0625^{\prime \prime}$
FBS-0046-02	.2520"	.3770"	.2500"	.5000"	.0469"
FB-0812-04-04	.2520"	.3780"	.2500"	.5000"	.0625"
FBS-0046-03	.2520"	.3770"	.3750"	.5000"	.0469"

$1 / 4^{\prime \prime} \times 7 / 16^{\prime \prime}$					
FB-0814-08	.2510"	.4395"	.5000"	.5000"	.0625"

$1 / 4^{\text {" }} \times 1 / 2^{\text {Nominal }}$					
FB-0816-10	.2520"	.5030"	.6250"	.6250"	. 0625 "
FB-0816-12	.2520"	.5030"	.7500"	.6250"	. 0625 "
$5 / 16_{\text {Nominal }} \times 3 / 8^{\prime \prime}$					
FB-1012-06	.3140"	.3770"	.3750"	.5000"	. 0469 "

$5 / 16^{\prime \prime} \times 7 / 16^{\prime \prime}$					
FB-1014-06	.3125"	.4400"	.3750"	.5625"	. 0625 "
FB-1014-08	.3125"	.4400"	.5000"	.5625"	. 0625 "
FB-1014-14	.3125"	.4400"	.8750"	.5625"	. 0625 "
FBS-0057-03	.3140"	.4390"	.3750"	.6250"	.0938"
FBS-0057-06	.3140"	.4390"	.7500"	.6250"	.0938"
FB-1014-12	.3145"	.4405"	.7500"	.5625"	.0625"

$5 / 16_{\text {Nominal }} \times 1 / 2^{\prime \prime}$					
FB-1016-06	.3140"	.5020"	.3750"	. 6875	.0938"
FB-1016-08	. 3140 "	.5020"	.5000"	.6875"	.0938"
FB-1016-10	.3140"	.5020"	.6250"	.6875"	. 0938 "

$3 / 8^{\prime \prime} \times 1 / \mathbf{N " I}^{\prime \prime}$					
Nominal					

ITEM NUMBER	(B) INSIDE DIAMETER	(A) OUTSIDE DIAMETER	(L) LENGTH	$\begin{gathered} \text { (C) } \\ \text { FLANGE } \\ O D \end{gathered}$	(E) FLANGE THICKNESS
$3 / 8^{\prime \prime} \times 9 / 16^{\text {Nominal }}$					
FB-1218-11	. 3760 "	.5640"	.6875"	.7500"	.0625"
FB-1218-13	. 3760 "	.5640"	.8125"	.7400"	.0625"
FB-1218-08	. 3770	.5655"	.5000"	.6875"	. $0625^{\prime \prime}$
FBS-0069-06	. $3770{ }^{\prime \prime}$.5645"	.7500"	.7500"	.1250"
FB-1218-12	.3770"	.5655"	.7500"	.6875"	.0625"
FB-1218-20	. 3770 "	.5645"	$1.2500 "$.7500"	.1250"
$3 / 8^{11} \times 5 / 8^{11}$					
FBS-0610-04	. 3750 "	.6250"	.5000"	.8750"	.1250"
FBS-0610-06	. $3750{ }^{\prime \prime}$.6250"	.7500"	.8750"	.1250"
FBS-0610-08	. $3750{ }^{\prime \prime}$.6250"	$1.0000^{\prime \prime}$.8750"	.1250"
FBS-0610-10	. 3750 "	.6250"	$1.2500^{\prime \prime}$.8750"	.1250"
FB-1220-08	. $3760{ }^{\prime \prime}$.6270"	.5000"	.8750"	.0625"
FB-1220-12	. 3760 "	.6270"	.7500"	.8750"	.0625"
FB-1220-20	. 3760 "	.6270"	$1.2500 "$.8750"	.0625"
FB-1220-16	.3770"	.6270"	$1.0000^{\prime \prime}$.8750"	.0625"

$3 / 8^{\prime \prime} \underset{\text { Nominal }}{\times 3 / 4}$					
FB-1224-08	.3770"	.7530"	.5000"	$1.0000^{\prime \prime}$.1250"

$7 / 16^{11} \underset{\text { Nominal }}{x} 9 / 16^{11}$					
FB-1418-08	.4390"	.5650"	.5000"	.6875"	.0625"
FB-1418-10	.4390"	.5650"	.6250"	.6875"	.0625"
FB-1418-12	.4390"	.5650"	.7500"	.6875"	.0625"

$1 / 2^{11} \times 5 / 8^{11}$					
FBS-0810-03	.5000"	.6250"	.3750"	.8750"	.1250"
FB-1620-05	.5020"	.6270"	.3125"	.7500"	.0938"
FB-1620-06	.5020"	.6280"	.3750"	.8750"	.1250"
FB-1620-08	.5020"	.6280"	.5000"	.8750"	.1250"
FB-1620-09	.5020"	.6270"	.5625"	.8750"	.0625"
FB-1620-10	.5020"	.6280"	.6250"	.8750"	.1250"
FB-1620-11	.5020"	.6270"	.6875"	.8750"	.0625"
FB-1620-12	.5020"	.6280"	.7500"	.8750"	.1250"
FB-1620-15	.5020"	.6270"	.9375"	.8750"	.0625"
FB-1620-16	.5020"	.6280"	$1.0000^{\prime \prime}$.8750"	.1250"
FB-1620-18	.5020"	.6270"	$1.1250{ }^{\prime \prime}$.8750"	.0625"
FB-1620-20	.5020"	.6280"	$1.2500^{\prime \prime}$.8750"	.1250"
FB-1620-24	.5020"	.6280"	$1.5000^{\prime \prime}$.8750"	.1250"
FBS-0810-14	.5020"	.6280"	$1.7500^{\prime \prime}$.8750"	.1250"
FB-1620-28	.5020"	.6270"	$1.7500^{\prime \prime}$.9688"	.0938"

FLANGE

$1 / 2^{\text {Nominal }} \times 3 / 44^{\prime \prime}$					
FBS-0812-04	.5000"	.7500"	.5000"	$1.0000{ }^{\prime \prime}$.1250"
FBS-0812-05	.5000"	.7500"	.6250"	$1.0000^{\prime \prime}$.1250"
FBS-0812-06	.5000"	.7500"	.7500"	$1.0000^{\prime \prime}$.1250"
FBS-0812-07	.5000"	.7500"	.8750"	$1.0000^{\prime \prime}$.1250"
FBS-0812-08	.5000"	.7500"	$1.0000^{\prime \prime}$	$1.0000{ }^{\prime \prime}$.1250"
FBS-0812-10	.5000"	.7500"	$1.2500 "$	$1.0000^{\prime \prime}$.1250"
FBS-0812-12	.5000"	.7500"	$1.5000^{\prime \prime}$	$1.0000^{\prime \prime}$.1250"
FB-1624-08	.5020"	.7530"	.5000"	$1.0000^{\prime \prime}$.1250"
FB-1624-10	.5020"	.7530"	.6250"	$1.0000^{\prime \prime}$.1250"
FB-1624-12	.5020"	.7530"	.7500"	$1.0000^{\prime \prime}$.1250"
FB-1624-14	.5020"	.7530"	.8750"	$1.0000^{\prime \prime}$.1250"
FB-1624-16	.5020"	.7530"	$1.0000^{\prime \prime}$	$1.0000^{\prime \prime}$.1250"
FB-1624-20	.5020"	.7530"	$1.2500 "$	$1.0000^{\prime \prime}$.1250"
FB-1624-24	.5020"	.7530"	1.5000"	$1.0000^{\prime \prime}$.1250"
FB-1624-06	.5050"	.7530"	. 3750	$1.0000^{\prime \prime}$.1250"

$9 / 16_{\text {Nominal }}^{11} \times 3 / 44^{11}$					
FBS-0912-08	.5650"	.7530"	$1.0000^{\prime \prime}$	$1.0000^{\prime \prime}$.1250"
FB-1824-16	.5650"	.7530"	$1.0000^{\prime \prime}$	$1.0000^{\prime \prime}$.1250"

ITEM NUMBER	(B) INSIDE DIAMETER	(A) OUTSIDE DIAMETER	(L) LENGTH	$\begin{aligned} & \text { CC) } \\ & \text { FLANGE } \\ & \text { OD } \end{aligned}$	(E) FLANGE THICKNESS
FBS-1013-11	.6270"	.8150"	1.4375"	1.0625"	.1563"
FBS-1013-12	.6270"	.8150"	1.5000"	1.0625"	.1563"
FB-2026-24	.6270"	.8165"	$1.5000{ }^{\prime \prime}$	$1.0000 "$.1250"
FBS-1013-16	.6270"	.8150"	$2.0000^{\prime \prime}$	1.0625"	.1563"
FB-2026-23	.6280"	.8160"	$1.4375{ }^{\prime \prime}$	$1.2500{ }^{\prime \prime}$.1250"

$5 / 8^{\prime \prime} \times 7 / 8^{\prime \prime}$					
Nominal					

$5 / 8_{\text {Nominal }}^{\text {II }} \times 1^{11}$					
FBS-1016-06	.6250"	$1.000{ }^{\prime \prime}$.7500"	1.2500"	.1563"
FBS-1016-08	.6250"	$1.0000^{\prime \prime}$	$1.0000^{\prime \prime}$	$1.2500 "$.1563"
FB-2032-16	.6270"	1.0030 "	$1.000{ }^{\prime \prime}$	$1.2500 "$.1562"
$3 / 4^{11} \times 7 / 8^{\text {Nominal }}$					
FB-2428-08	.7520"	.8790"	.5000"	1.1250"	.1250"
FBS-1214-06	.7520"	.8780"	.7500"	1.1250"	.1563"
FB-2428-12	.7520"	.8790"	.7500"	1.1250"	.1250"
FB-2428-16	.7520"	.8780"	1.0000"	1.1250"	.1563"
FBS-1214-10	.7520"	.8780"	$1.2500 "$	1.1250"	.1563"

$5 / 8^{\prime \prime} \times 3 / 4^{\prime \prime}$					
FBS-1012-06	.6250"	.7500"	.7500"	$1.0000{ }^{\prime \prime}$.1250"
FBS-1012-04	.6260"	.7530"	.5000"	$1.0000{ }^{\prime \prime}$.1250"
FBS-1012-05	.6260"	.7530"	.6250"	$1.0000{ }^{\prime \prime}$.1250"
FBS-1012-08	.6260"	.7530"	$1.0000{ }^{\prime \prime}$	$1.0000^{\prime \prime}$.1250"
FBS-1012-10	.6260"	.7530"	$1.2500 "$	$1.0000^{\prime \prime}$.1250"
FB-2024-08	.6260"	.7530"	.5000"	$1.0000{ }^{\prime \prime}$.1250"
FB-2024-10	.6260"	.7530"	.6250"	$1.0000{ }^{\prime \prime}$.1250"
FB-2024-12	.6260"	.7530"	.7500"	$1.0000^{\prime \prime}$.1250"
FB-2024-16	.6260"	.7530"	$1.0000{ }^{\prime \prime}$	$1.0000{ }^{\prime \prime}$.1250"
FB-2024-18	.6270"	.7530"	1.1250 "	$1.0000^{\prime \prime}$.1250"
FB-2024-20	.6260"	.7530"	$1.2500 "$	$1.000{ }^{\prime \prime}$.1250"

$5 / 8^{\prime \prime} \times 13 / 16^{\prime \prime}$						
Nominal						

$3 / 4^{\prime \prime} \underset{\substack{\text { Nominal }}}{\times 15 / 16^{\prime \prime}}$					
FBS-1215-08	.7520"	.9400"	1.0000"	1.1875"	.1563"
FB-2430-20	.7520"	.9400"	$1.2500{ }^{\prime \prime}$	1.1875"	.1563"
FB-2430-24	.7520"	.9400"	$1.5000{ }^{\prime \prime}$	1.1875"	.1563"
FB-2430-09	.7530"	.9380"	.5625"	1.3125"	.1250"
FB-2430-12	.7530"	.9380"	.7500"	1.3125"	.1250"
FB-2430-16	.7530"	.9400"	$1.0000^{\prime \prime}$	$1.2500{ }^{\prime \prime}$.1250"
FB-2430-18	.7530"	.9405"	$1.1250{ }^{\prime \prime}$	1.1750"	.1250"
FB-2430-25	.7530"	.9380"	1.5625"	1.3125"	.1250"
$3 / 4_{\text {Nominal }}^{\text {II }} \times 1^{11}$					
FBS-1216-05	.7500"	$1.0000{ }^{\prime \prime}$.6250"	$1.2500{ }^{\prime \prime}$.1563"
FBS-1216-06	.7500"	$1.0000{ }^{\prime \prime}$.7500"	$1.2500 "$.1563"
FBS-1216-08	.7500"	$1.0000{ }^{\prime \prime}$	$1.0000^{\prime \prime}$	$1.2500 "$.1563"
FBS-1216-10	.7500"	$1.0000{ }^{\prime \prime}$	$1.2500 "$	$1.2500 "$.1563"
FBS-1216-12	.7500"	$1.0000{ }^{\prime \prime}$	$1.5000{ }^{\prime \prime}$	$1.2500 "$.1563"
FBS-1216-16	.7500"	$1.0000{ }^{\prime \prime}$	$2.0000^{\prime \prime}$	1.2500"	.1563"
FBS-1216-082110	.7505"	$1.0020{ }^{\prime \prime}$	$1.0000 "$	1.4375"	.1250"
FB-2432-10	.7520"	1.0040 "	.6250"	$1.2500{ }^{\prime \prime}$.1875"
FB-2432-12	.7520"	1.0040 "	.7500"	$1.2500{ }^{\prime \prime}$.1875"
FB-2432-16	.7520"	$1.0040{ }^{\prime \prime}$	$1.0000 "$	$1.2500 "$.1875"

[^8]

$7 / 8_{\text {Nominal }}^{11} \times 1^{11}$					
FB-2832-10	.8765"	1.0030 "	.6250"	$1.2500{ }^{\prime \prime}$.1250"
FB-2832-08	.8770"	1.0040 "	.5000"	$1.2500{ }^{\prime \prime}$.1875"
FBS-1416-06	.8770"	1.0030 "	.7500"	$1.2500 "$.1563"
FB-2832-12	.8770"	1.0040 "	.7500"	$1.2500 "$.1875"
FB-2832-16	.8770"	1.0040 "	$1.0000{ }^{\prime \prime}$	$1.2500{ }^{\prime \prime}$.1875"
FB-2832-20	.8770"	1.0030 "	$1.2500{ }^{\prime \prime}$	$1.2500^{\prime \prime}$.1563"

$7 / 8^{11} \times \underset{\text { Nominal }}{\times 1-1 / 8^{11}}$					
FBS-1418-08	.8750"	1.1250"	$1.0000{ }^{\prime \prime}$	$1.3750{ }^{\prime \prime}$.1563"
FBS-1418-12	.8750"	$1.1250{ }^{\prime \prime}$	$1.5000{ }^{\prime \prime}$	$1.3750{ }^{\prime \prime}$.1563"
FB-2836-10	.8770"	$1.1280^{\prime \prime}$.6250"	$1.5000{ }^{\prime \prime}$.1250"
FB-2836-16	.8770"	$1.1280{ }^{\prime \prime}$	$1.0000^{\prime \prime}$	$1.5000{ }^{\prime \prime}$.1250"
FB-2836-20	.8770"	$1.1280{ }^{\prime \prime}$	$1.2500 "$	$1.5000{ }^{\prime \prime}$.1250"
FB-2836-24	.8770"	$1.1280^{\prime \prime}$	$1.5000{ }^{\prime \prime}$	$1.3750 "$.1563"
FB-2836-28	.8770"	$1.1280{ }^{\prime \prime}$	$1.7500{ }^{\prime \prime}$	$1.5000 "$.1250"
FB-2836-12	.8780"	$1.1280{ }^{\prime \prime}$.7500"	$1.5000{ }^{\prime \prime}$.1250"

$1^{\text {II }} \times \underset{\text { Nominal }}{1-1 / 44^{\text {II }}}$					
FBS-1620-06	$1.0000{ }^{\prime \prime}$	1.2500"	.7500"	$1.5000{ }^{\prime \prime}$.1875"
FBS-1620-08	$1.0000{ }^{\prime \prime}$	1.2500"	$1.0000{ }^{\prime \prime}$	$1.5000{ }^{\prime \prime}$.1875"
FBS-1620-10	$1.0000{ }^{\prime \prime}$	$1.2500 "$	$1.2500{ }^{\prime \prime}$	$1.5000{ }^{\prime \prime}$.1875"
FBS-1620-12	$1.0000{ }^{\prime \prime}$	1.2500"	$1.5000{ }^{\prime \prime}$	$1.5000^{\prime \prime}$.1875"
FBS-1620-16	$1.0000{ }^{\prime \prime}$	1.2500"	$2.0000^{\prime \prime}$	$1.5000^{\prime \prime}$.1875"
FB-3240-28	$1.0020{ }^{\prime \prime}$	1.2520"	$1.7500{ }^{\prime \prime}$	$1.6250{ }^{\prime \prime}$.1250"
FB-3240-32	$1.0020{ }^{\prime \prime}$	1.2530"	$2.0000^{\prime \prime}$	$1.5000{ }^{\prime \prime}$.1875"
FB-3240-12	$1.0030{ }^{\prime \prime}$	1.2540"	.7500"	$1.5000{ }^{\prime \prime}$.1250"
FB-3240-16	$1.0030{ }^{\prime \prime}$	1.2540"	$1.0000{ }^{\prime \prime}$	$1.5000{ }^{\prime \prime}$.1250"
FB-3240-20	$1.0030{ }^{\prime \prime}$	1.2540"	$1.2500{ }^{\prime \prime}$	$1.5000{ }^{\prime \prime}$.1250"
FB-3240-24	1.0030 "	1.2540"	$1.5000{ }^{\prime \prime}$	$1.5000^{\prime \prime}$.1250"

$1^{11} \times \underset{\text { Nominal }}{1-5 / 16^{11}}$					
FB-3242-20	1.0010"	1.3160"	$1.2500{ }^{\prime \prime}$	$1.7500{ }^{\prime \prime}$.2188"
FB-3242-24	$1.0015{ }^{\prime \prime}$	$1.3155^{\prime \prime}$	$1.5000{ }^{\prime \prime}$	1.8750 "	.1250"

$1^{11} \times \underset{\text { Nominal }}{1-3 / 8^{\prime \prime}}$					
FBS-1622-08	$1.0000{ }^{\prime \prime}$	1.3750"	$1.0000{ }^{\prime \prime}$	1.6250"	.1875"
FBS-1622-14	$1.0000{ }^{\prime \prime}$	$1.3750{ }^{\prime \prime}$	$1.7500{ }^{\prime \prime}$	1.6250"	.1875"
FB-3244-16	1.0020"	$1.3780{ }^{\prime \prime}$	$1.0000 "$	1.6250"	.1875"
FB-3244-24	1.0020"	$1.3780{ }^{\prime \prime}$	$1.5000{ }^{\prime \prime}$	$1.6250 "$.1875"

ITEM NUMBER	(B) INSIDE DIAMETER	(A) OUTSIDE DIAMETER	(L) LENGTH	(C) FLANGE OD	(E) FLANGE THICKNESS
FB-3244-28	$1.0020^{\prime \prime}$	$1.3780 "$	$1.7500^{\prime \prime}$	$1.6250^{\prime \prime}$	$.1875^{\prime \prime}$
FB-3244-12	$1.0030^{\prime \prime}$	$1.3790^{\prime \prime}$	$.7500^{\prime \prime}$	$1.6250^{\prime \prime}$	$.1875^{\prime \prime}$
FB-3244-32	$1.0030^{\prime \prime}$	$1.3780^{\prime \prime}$	$2.0000^{\prime \prime}$	$1.6250^{\prime \prime}$	$.1875^{\prime \prime}$

$1-1 / 8^{\text {II }} \times 1-3 / 8^{\text {Nominal }}$					
FB-3644-12	$1.1270{ }^{\prime \prime}$	$1.3770{ }^{\prime \prime}$.7500"	$1.7500{ }^{\prime \prime}$.1250"
FB-3644-16	$1.1270{ }^{\prime \prime}$	$1.3770{ }^{\prime \prime}$	$1.0000{ }^{\prime \prime}$	$1.7500{ }^{\prime \prime}$.1250"
FB-3644-20	$1.1270{ }^{\prime \prime}$	$1.3770{ }^{\prime \prime}$	$1.2500 "$	$1.7500{ }^{\prime \prime}$.1250"

$1-1 / 4^{\text {II }} \underset{\text { Nominal }}{\times 1-1 / 2^{I I}}$					
FBS-2024-08	$1.2500 "$	$1.5000{ }^{\prime \prime}$	$1.0000^{\prime \prime}$	1.7500	.1875"
FBS-2024-10	$1.2500 "$	$1.5000{ }^{\prime \prime}$	$1.2500{ }^{\prime \prime}$	$1.7500 "$.1875"
FBS-2024-12	$1.2500 "$	$1.5000{ }^{\prime \prime}$	$1.5000{ }^{\prime \prime}$	$1.7500{ }^{\prime \prime}$.1875"
FB-4048-08	1.2515"	1.5030 "	.5000"	$1.6875^{\prime \prime}$.1250"
FB-4048-16	1.2520"	1.5030 "	$1.0000^{\prime \prime}$	1.7500	.1875"
FB-4048-20	1.2520"	$1.5030 "$	$1.2500{ }^{\prime \prime}$	1.7500	.1875"
FB-4048-24	1.2520"	$1.5030{ }^{\prime \prime}$	$1.5000{ }^{\prime \prime}$	1.7500	.1875"
FB-4048-28	1.2520"	1.5030 "	$1.7500{ }^{\prime \prime}$	$2.0000{ }^{\prime \prime}$.0938"

$1-3 / 8^{\prime \prime} \times 1-5 / 8^{\prime \prime}$						
Nominal						

$1-1 / 2^{\text {II }} \underset{\text { Nominal }}{\times 1-3 / 4^{\prime \prime}}$					
FBS-2428-12	$1.5000{ }^{\prime \prime}$	$1.7500{ }^{\prime \prime}$	$1.5000{ }^{\prime \prime}$	$2.0625^{\prime \prime}$.1875"
FB-4856-24	$1.5040{ }^{\prime \prime}$	$1.7550{ }^{\prime \prime}$	$1.5000{ }^{\prime \prime}$	$2.0000{ }^{\prime \prime}$.1875"

$1-5 / 8_{\text {Nominal }}^{11} \times 2^{11}$					
FB-5264-32	1.6265"	2.0040 "	$2.000{ }^{\prime \prime}$	$2.2500 "$.1875"
$1-3 / 4^{11} \underset{\text { Nominal }}{\times 2-1 / 4^{\prime \prime}}$					
FB-5672-40	$1.7530{ }^{\prime \prime}$	$2.2540 "$	$2.5000 "$	3.0000	.2500"

$2^{\prime \prime} \times \underset{\text { Nominal }}{2-1 / 4^{\prime \prime}}$					
FB-6472-12	$2.0030 "$	2.2540 "	.7500"	$2.5000 "$.1250"
FB-6472-16	$2.0030 "$	$2.2540 "$	$1.0000{ }^{\prime \prime}$	$2.5000 "$.1250"
FB-6472-20	$2.0030 "$	$2.2540 "$	$1.2500 "$	$2.5000 "$.1250"
FB-6472-32	$2.0030{ }^{\prime \prime}$	$2.2540 "$	2.0000	$2.5000{ }^{\prime \prime}$.1250"

$2-3 / 4^{\text {II }} \underset{\text { Nominal }}{\times 3-1 / 4^{\prime \prime}}$					
FB-88104-24	2.7520 "	3.2550 "	$1.5000{ }^{\prime \prime}$	4.0000"	.1875"
$3^{11} \times \underset{\text { Nominal }}{3-1 / 2^{\text {II }}}$					
FB-96112-38	$3.0020 "$	3.5020"	$2.3750{ }^{\prime \prime}$	$4.0000{ }^{\prime \prime}$.3750"

SLIEME

DESCRIPTION

A tubular lining used to reduce friction and wear between parts, or constrain parts in motion. Generally used in light to medium duty applications not requiring a rolling bearing.

HOW TO IDENTIFY

1. Verify sleeve cylinder design.
2. Measure inside diameter (B).
3. Measure outside diameter (A).
4. Measure length (L).
5. Find the part number in the chart below.

SLEEVE BEARING TOLERANCES					
MATERIAL		INSIDE DIAMETER (B)		LENGTH (L)	
(Prefix)	(Material/Finish)	(Size Range)	(Tolerance)	(Size Range)	(Tolerance)
SB	Sintered Bronze, Plain, Oil Impregnated	$\begin{aligned} & 0-1.5000 " \\ & >1.5000-2.5000 " \\ & >2.5000-3.0000 " \\ & >3.0000-4.0000 " \\ & >4.0000-5.0000 " \\ & >5.0000-6.0000 " \end{aligned}$	$\begin{aligned} & +0 /-.0010^{" \prime} \\ & +0 /-.0015 " \\ & +0 /-.0020^{\prime \prime} \\ & +0 /-.0030^{\prime \prime} \\ & +0 /-.0040 " \\ & +0 /-.0050 " \end{aligned}$	$\begin{aligned} & 0-1.5000 " \\ & >1.5000-3.0000 " \\ & >3.0000-5.0000 " \end{aligned}$	$\begin{aligned} & \pm .0050 " \\ & \pm .0075 " \\ & \pm .0100^{\prime \prime} \end{aligned}$

ITEM NUMBER	(B) INSIDE DIAMETER	(A) OUTSIDE DIAMETER	(L) LENGTH	ITEM NUMBER	(B) INSIDE DIAMETER	(A) OUTSIDE DIAMETER	(L) LENGTH
$3 / 16_{\text {Nominal }}^{\text {II }} \underset{1 / 4}{*}$				$1 / 4^{\prime \prime} \times 7 / 16^{\prime \prime}$ Nominal			
SB-0608-10	.1890"	.2520"	.6250" (5/8)	SB-0814-16	.2520"	.4390"	1.0000 " (1)
$3 / 16^{11} \times 3 / 8^{11}$ Nominal				$1 / 4^{\prime \prime} \times 1 / 2^{\prime \prime}$			
SB-0612-12	.1900"	.3770"	.7500" (3/4)	SB-0816-12	.2520"	.5030"	.7500" (3/4)
$1 / 4^{\text {II }} \times 5 / 16^{\text {Nominal }}$				$5 / 16_{\text {Nominal }}^{\text {" }} \times 3 / 8^{\prime \prime}$			
SB-0810-06	.2520"	.3150"	.3750" (3/8)	SB-1012-16	.3145"	.3780"	1.0000" (1)
SB-0810-08	.2520"	.3150"	.5000" (1/2)	$5 / 16^{\text {II }} \underset{\text { Nominal }}{\times 7 / 16^{\prime \prime}}$			
Nominal				SB-1014-04	.3145"	.4400"	.2500" (1/4)
SB-0812-08	.2520"	.3770"	.5000" (1/2)				
SB-0812-16	.2520"	.3770"	1.0000" (1)		$\text { SAE } 66 \theta$	$A S T \text { BRON }$	

SLIEAVE

THRUST

DESCRIPTION

A washer-shaped component designed to support axial loads in rotating applications. Used to keep components lubricated and aligned along a shaft. A standard steel washer in the same application will deteriorate and cause excessive wear.

HOW TO IDENTIFY

1. Verify flat washer-shaped design.
2. Measure inside diameter (B).
3. Measure outside diameter (A).
4. Measure thickness (C).
5. Find the part number in the chart below.

PREFIX MATERIAL/FINISH
TB $=$ SAE 841 SINTERED BRONZE,
PLAIN, OIL IMPREGNATED
ADDITIONAL SIZES AND FINISHES MAY BE AVAILABLE UPON REQUEST

MATERIAL		INSIDE DIA. (B)		OUTSIDE DIA. (A)		THICKNESS (C)	
(Prefix)	(Material/Finish)	(Size Range)	(Tolerance)	(Size Range)	(Tolerance)	(Size Range)	(Tolerance)
TB	Sintered Bronze, Plain, Oil Impregnated	$\begin{aligned} & 0-1.2500 " \\ & >1.2500-2.5000 " \\ & >2.5000-4.0000 " \\ & >4.0000-6.0000 " \end{aligned}$	$\begin{aligned} & \pm .0050 " \\ & \pm .0100^{\prime \prime} \\ & \pm .0150^{\prime \prime} \\ & \pm .0200^{\prime \prime} \end{aligned}$	$\begin{aligned} & 0-1.5000 " \\ & >1.5000-3.0000 " \\ & >3.0000-4.5000 " \\ & >4.5000-6.0000 \end{aligned}$	$\begin{aligned} & \pm .0100^{\prime \prime} \\ & \pm .0150^{\prime \prime} \\ & \pm .0200 " \\ & \pm .0250^{\prime \prime} \end{aligned}$	All Sizes	$\pm .0025{ }^{\prime \prime}$

ITEM NUMBER	(B) INSIDE DIAMETER	(A) OUTSIDE DIAMETER	(c) THICKNESS
$1 / 4^{\text {II }} \underset{\text { Nominal }}{7 / 16^{\prime \prime}}$			
TB-0814-02	.2550"	.4380"	.0625" (1/16)
$1 / 4^{\text {II }} \times 1 / 2^{\text {Nominal }}$			
TB-0816-02	.2550"	.5000"	.0625" (1/16)

ITEM NUMBER	(B) INSIDE DIAMETER	(A) OUTSIDE DIAMETER	(C) THICKNESS
$5 / 16_{\text {Nominal }}^{\text {II }} \times 3 / 4^{\prime \prime}$			
TB-1024-02	.3150"	.7500"	.0625" (1/16)
$3 / 8^{11} \times 5 / 8^{\text {Nominal }}$			
TB-1220-02	. 3850 "	.6250"	.0625" (1/16)
$3 / 8^{\prime \prime} \underset{\text { Nominal }}{\times 3 / 4^{\text {II }}}$			
TB-1224-01	.3900"	.7500"	.0313" (1/32)
TB-1224-02	. 3775 "	.7500"	.0625" (1/16)
TB-1224-04	.3775"	.7500"	.1250" (1/8)

THRUST

$7 / 46_{\text {Nominal }}^{\text {II }} \underset{\times 3 / 4}{\text { II }}$			
TB-1424-02	.4385	.7500"	.0625" (1/16)
$1 / 2^{11} \underset{\text { Nominal }}{\times 3 / 4^{\prime \prime}}$			
TB-1624-02	.5050"	.7500"	.0625" (1/16)
$1 / 2_{\text {Nominal }}^{\times 7 / 8^{11}}$			
TB-1628-06	.5050"	.8750"	.1875" (3/16)
$1 / 2_{\text {Nominal }}^{\text {II }} \times 1 \text { II }$			
TB-1632-02	.5100"	$1.0000^{\prime \prime}$.0625" (1/16)
TB-1632-03	.5100"	$1.0000^{\prime \prime}$.0938" (3/32)
TB-1632-04	.5100"	$1.0000^{\prime \prime}$.1250" (1/8)

9/16" $\times 1-1 / 4^{\prime \prime}$			
0.02	.5650"	${ }^{1.25000}$	25"
TB-1840-04	.5650"	1.25000	.1250" (178)

$5 / 8^{\text {" }}$ Nominal ${ }^{\text {1" }}$			
02	.6280"	$1.0000^{\prime \prime}$.0625" (116)
TB-203-04	.6280"	$1.0000^{\prime \prime}$.1250" (1/8)

$5 / 8^{\prime \prime} \times 1-3 / 16^{\prime \prime}$			
TB-2038-02	.6270"	${ }^{1.1875 "}$.0625" (1/16)
TB-2038-03	.6270"	1.1875"	. $09388^{(3132)}$
TB-2038-04	.6270"	$1.1875{ }^{\text {" }}$.1250" (178)

$5 / 8^{\prime \prime} \times 1-1 / 4^{\prime \prime}$ Nominal			
TB-2040-02	.6280"	$1.2500^{\prime \prime}$.0625" (1/16)
TB-2040-04	.6280"	1.2500 "	.1250" (1/8)

$5 / 8^{11} \underset{\text { Nominal }}{\times 1-1 / 2^{11}}$			
TB-2048-04	.6280"	$1.5000^{\prime \prime}$.1250" (1/8)
$21 / 32_{\text {Nominal }}^{\text {I }} \times 1-1 / 2^{11}$			
TB-2148-02	.6560"	$1.5000{ }^{\prime \prime}$. 0625 " (1/16)
TB-2148-04	.6560"	$1.5000{ }^{\prime \prime}$.1250" (1/8)

$3 / 4^{\text {II }} \underset{\text { Nominal }}{\times 1-1 / 4^{\text {II }}}$			
TB-2440-02	.7530"	$1.2500^{\prime \prime}$. $0625^{\prime \prime}(1 / 16)$
TB-2440-04	.7530"	1.2500 "	.1250" (1/8)

SAE 66θ CAST BRONZE AVAILABLE UPON REQUEST

ITEM NUMBER	(B) INSIDE DIAMETER	(A) OUTSIDE DIAMETER	(C)

$3 / 4^{\text {II }} \times \underset{\text { Nominal }}{\times 1-9 / 16^{\text {II }}}$
.0938" (3/32)

$3 / 4^{\text {II }} \underset{\text { Nominal }}{\times 1-3 / 4}$			
TB-2456-04	.7650"	$1.7500{ }^{\prime \prime}$.1250" (1/8)
$7 / 8^{11} \underset{\text { Nominal }}{\times 1-1 / 2}$			
TB-2848-02	.8905 ${ }^{\prime \prime}$	$1.5000^{\prime \prime}$.0625" (1/16)
TB-2848-04	.8905 ${ }^{\prime \prime}$	$1.5000{ }^{\prime \prime}$.1250" (1/8)
$7 / 8_{\text {Nominal }}^{11} \times 2^{11}$			
TB-2864-04	.8800"	$2.0000^{\prime \prime}$.1250" (1/8)

$7 / 8^{11} \times \underset{\text { Nominal }}{\times 2-1 / 8^{11}}$			
TB-2868-04	.8905	$2.1250{ }^{\prime \prime}$.1250" (1/8)

1-1/2" Nominal			
TB-3248-02	1.0030"	$1.5040{ }^{\prime \prime}$.0625" (1/16)
TB-3248-04	1.0030 "	$1.5040{ }^{\prime \prime}$.1250" (1/8)
TB-3248-06	1.0030 "	1.5040 "	.1875" (3/16)

$\times 1.5 / 8^{11}$ Nominal			
TB-3252-02	$1.0155^{\prime \prime}$	$1.6250{ }^{\prime \prime}$.0625" (1/16)
TB-3252-04	$1.0155^{\prime \prime}$	1.6250 "	.1250" (1/8)
TB-3252-08	1.0155"	1.6250 "	.2500" (1/4)
$1^{*} \underset{\text { Nominal }}{\times 1-3 / 4}$			
TB-3256-02	1.0120"	$1.7500{ }^{\prime \prime}$.0625" (1/16)
TB-3256-04	$1.0120^{\prime \prime}$	1.7500 "	.1250" (1/8)

THRUST

ITEM NUMBER	(B) INSIDE DIAMETER	(A) OUTSIDE DIAMETER	(c) THICKNESS
$1_{\text {Nominal }}^{11} \times 2^{11}$			
TB-3264-04	1.0160"	$2.0000{ }^{\prime \prime}$.1250" (1/8)
TB-3264-06	1.0160"	$2.0000{ }^{\prime \prime}$.0938" (3/32)
$1^{11} \times \underset{\text { Nominal }}{2-7 / 8^{\prime \prime}}$			
TB-3292-04	1.0155"	$2.8750{ }^{\prime \prime}$.1250" (1/8)
$1-1 / 16_{\text {Nominal }}^{\text {I }} \times 2-3 / 8^{\prime \prime}$			
TB-3476-02	1.0625"	$2.3750{ }^{\prime \prime}$.0625" (1/16)
TB-3476-04	1.0625"	2.3750 "	.1250" (1/8)
$1-1 / 8^{11} \times 1-7 / 8^{11}$			
TB-3660-04	$1.1400 "$	1.8750"	.1250" (1/8)
$1-1 / 4^{\text {II }} \times \underset{\text { Nominal }}{ } \times 3-5 / 16^{\text {II }}$			
TB-40106-02	1.2550"	$3.3120 "$.0625" (1/16)
TB-40106-04	1.2550 "	$3.3120 "$.1250" (1/8)
$1-1 / 4^{\text {II }} \underset{\text { Nominal }}{\times 1-11 / 16^{\text {II }}}$			

$\left.\begin{array}{|l|c|c|c|c|}\hline \text { ITEM NUMBER } & \begin{array}{c}\text { (B) } \\ \text { INSIDE } \\ \text { DIAMETER }\end{array} & \begin{array}{c}\text { (A) } \\ \text { OUTSIDE } \\ \text { DIAMETER }\end{array} & \text { THICKNESS } \\ \hline & 1-9 / 16^{\text {II }} \times 2-7 / 6^{\text {II }} \\ \text { Nominal }\end{array}\right]$

	$1=5$	$\text { inal } 2-5$	
TB-5684-04	$1.7650{ }^{\prime \prime}$	$2.6250{ }^{\prime \prime}$.1250" (1/8)
$1-15 / 16_{\text {Nominal }}^{11} \times 2-5 / 8^{11}$			
TB-6284-04	1.9530"	$2.6250{ }^{\prime \prime}$.1250" (1/8)

$2^{11} \times 3^{11}$			
TB-6496-04	$2.0100^{\prime \prime}$	$3.0000^{\prime \prime}$.1250" (1/8)
TB-6496-06	$2.0100^{\prime \prime}$	$3.0000^{\prime \prime}$.1875" (3/16)
TB-6496-08	$2.0100^{\prime \prime}$	$3.0000^{\prime \prime}$.2500" (1/4)

$2^{11} \times \underset{\text { Nominal }}{3-5 / 8^{11}}$			
TB-64116-06	$2.0310^{\prime \prime}$	3.6250 "	.1875" (3/16)

$2-1 / 16_{\text {Nominal }}^{11} \times 4^{\prime \prime}$			
TB-66128-04	2.0620 "	$4.0000^{\prime \prime}$.2500" (1/4)
$2-1 / 2^{11} \underset{\text { Nominal }}{\times 3-1 / 44^{11}}$			
TB-80104-04	2.5020 "	$3.2500^{\prime \prime}$.1250" (1/8)
$2-3 / 4{ }_{\text {Nominal }}^{\text {I }} \underset{-3}{\times 3}$			
TB-88124-08	2.7660 "	$3.8750{ }^{\prime \prime}$.2500" (1/4)

APPLICATION

ABOUT BRONEA

BENEFITS OF BRONZE

Bronze is a durable alloy for use as bearings as it has a low friction coefficient compared to steel on steel, making it a natural bearing material with excellent performance.
While not as resistant as stainless steel, bronze has better corrosion resistance than tin, lead, cast iron, or steel. Over time, it will develop a copper oxide layer on the surface protecting the metal beneath.

When properly designed, installed, and maintained, bronze bearings have been known to outlast the components they bear.

SINTERED BRONZE

WHAT IS BRONZE?

Bronze is an alloy made from copper and tin. SAE 841 bronze is copper (89%), tin (10%), and iron (1%). Other metals, metalloids, and non-metals are added to affect its stiffness, ductility, and machinability.

Bronze is ground to make a very fine powder.

The powder is formed together under pressure.

The formed powder is heated, but not melted, to weld the particles together.

The result is a sintered product with pores capable of holding a lubricating liquid.

SINTERED BRONZE VS. CAST BRONZE

Sintered bronze bearings are pressed from bronze powder, sintered into a hardened part, and vacuum impregnated with oil. Cast bronze bearings begin with continuous cast bronze and are then machined on a lathe to create their shape.

PRIECISION BALL FEATURES

Precision balls are used mainly in ball bearing designs and other demanding industrial applications. They are manufactured to the American Bearing Manufacturers Association (ABMA) Standard 10, which characterizes their geometric tolerances. Grades range from 2000 to 3 . The smaller the number the higher the precision and lack of flats, pits, cuts, or other geometric anomalies. The surface roughness of precision balls may be as smooth as .00000 "" Arithmetic Average depending on grade. $_{\text {I }}$. Hardness varies depending on material grade selected.

DESIGN CONSIDERATIONS

SIZE

ACTU,AL SIZE MAY BE SLIGHTLY LARGER OR SM,ALLER THAN NOMINAL SIZE

SMOOTHNESS

4 MEASURE OF THE TEXTURE AND W,AVINESS OF THE SURFACE

QUCK RAFARANCE GUIDE

O	COMMON	APPLICABLE STAND	FABRICATION	HOW TO	COMMON	COMMENTS
$\frac{1}{4}$	NAMES	STANDARDS		IDENTIFY	USES	

APPLICATION

PRECISION BALLS ARE USED IN BALL BEARING ASSEMBLIES AND IN KINEMATIC MOUNTING APPLICATIONS

MEASURING

Depending on their grade, variances from nominal sizes for precision balls may be so slight ($\pm 0.000001^{\prime \prime}$) that they can not be measured using calipers or micrometers.

Accurately measuring precision balls requires highly specialized equipment like the HEIDENHAIN-CERTO Length Gauge or a Talyrond Machine capable of measuring the size, roundness, and cylindricity of the ball between two parallel flats.

PRIECISION - IMPERIAL

DESCRIPTION

Precision balls are used mainly in ball bearing designs and other demanding industrial applications. The surface roughness of precision balls may be as smooth as .000008 " Arithmetic Average depending on grade. Hardness varies depending on material grade selected.

HOW TO IDENTIFY

1. Verify round design.
2. Select grade.
3. Measure diameter (A).
4. Build the part number from the chart below.

PREFIX MATERIAL/FINISH

BALL-1 $\theta=$ GRADE 25, CHROME STEEL, PLAIN
BALL-11 = GRADE $1 \theta \theta \theta$, CARBON STEEL, PLAIN*
BALL-12 $=$ GRADE $1 \theta \theta, 44 \theta$ STAINLESS STEEL, PLAIN

BALL-121 = GRADE $1 \theta \theta, 316$ STAINLESS STEEL, PLAIN Material/finish combinations may not be available in all sizes.

HOW TO BUILD A PART NUMBER

ITEM PREFIX	
CODE	MATERIAL
BALL-10	Grade 25, Chrome Steel, Plain
BALL-11	Grade 1000, Carbon Steel, Plain*
BALL-12	Grade 100, 440 Stainless Steel, Plain
BALL-121	Grade 100, 316 Stainless Steel, Plain

TO ORDER CHOOSE YOUR MATERIAL,

CODE	DIAMETER
0015	$.0156^{\prime \prime}(1 / 64)$
0031	$.0313^{\prime \prime}(1 / 32)$
0404	$.0400^{\prime \prime}$
0046	$.0469^{\prime \prime}(3 / 64)$
0062	$.0625^{\prime \prime}(1 / 16)$
0078	$.0781^{\prime \prime}(5 / 64)$
0083	$.0830^{\prime \prime}$
0093	$.0938^{\prime \prime}(3 / 32)$
0109	$.1094^{\prime \prime}(7 / 64)$
0125	$.1250^{\prime \prime}(1 / 8)$
0140	$.1406^{\prime \prime}(9 / 64)$
0156	$.1563^{\prime \prime}(5 / 32)$
0171	$.1719^{\prime \prime}(11 / 64)$
0187	$.1875^{\prime \prime}(3 / 16)$
0203	$.2031^{\prime \prime}(13 / 64)$
0218	$.2188^{\prime \prime}(7 / 32)$
0234	$.2344^{\prime \prime}(15 / 64)$
0250	$.2500^{\prime \prime}(1 / 4)$
0265	$.2656^{\prime \prime}(17 / 64)$

CODE	DIAMETER
0281	$.2813^{\prime \prime}(9 / 32)$
0296	$.2969^{\prime \prime}(19 / 64)$
0312	$.3125^{\prime \prime}(5 / 16)$
0328	$.3281^{\prime \prime}(21 / 64)$
0343	$.3437^{\prime \prime}(11 / 32)$
0359	$.3594^{\prime \prime}(23 / 64)$
0375	$.3750^{\prime \prime}(3 / 8)$
0406	$.4063^{\prime \prime}(13 / 32)$
0437	$.4375^{\prime \prime}(7 / 16)$
0453	$.4531^{\prime \prime}(29 / 64)$
0468	$.4687^{\prime \prime}(15 / 32)$
0484	$.4844^{\prime \prime}(31 / 64)$
0500	$.5000^{\prime \prime}(1 / 2)$
0531	$.5312^{\prime \prime}(17 / 32)$
0562	$.5625^{\prime \prime}(9 / 16)$
0593	$.5937^{\prime \prime}(19 / 32)$
0625	$.6250^{\prime \prime}(1 / 16)$
0656	$.6562^{\prime \prime}(21 / 32)$
0687	$.6875^{\prime \prime}(11 / 16)$

CODE	DIAMETER
0718	$.7188^{\prime \prime}(23 / 32)$
0750	$.7500^{\prime \prime}(3 / 4)$
0781	$.7813^{\prime \prime}(25 / 32)$
0812	$.8125^{\prime \prime}(13 / 16)$
0843	$.8438^{\prime \prime}(27 / 32)$
0875	$.8750^{\prime \prime}(7 / 8)$
0906	$.9063^{\prime \prime}(29 / 32)$
0937	$.9375^{\prime \prime}(15 / 16)$
0959	$.9590^{\prime \prime}$
0968	$.9688^{\prime \prime}(31 / 32)$
1000	$1.0000^{\prime \prime}(1)$
1062	$1.0625^{\prime \prime}(1-1 / 16)$
1125	$1.1250^{\prime \prime}(1-1 / 8)$
1187	$1.1875^{\prime \prime}(1-3 / 16)$
1250	$1.2500^{\prime \prime}(1-1 / 4)$
1312	$1.3125^{\prime \prime}(1-5 / 16)$
1375	$1.3750^{\prime \prime}(1-3 / 8)$
1437	$1.4375^{\prime \prime}(1-7 / 16)$
1500	$1.5000^{\prime \prime}(1-1 / 2)$

CODE	DIAMETER
1562	$1.5625^{\prime \prime}(1-9 / 16)$
1625	$1.6250^{\prime \prime}(1-5 / 8)$
1687	$1.6875^{\prime \prime}(1-11 / 16)$
1750	$1.7500^{\prime \prime}(1-3 / 4)$
1812	$1.8125^{\prime \prime}(1-13 / 16)$
1875	$1.8750^{\prime \prime}(1-7 / 8)$
1937	$1.9375^{\prime \prime}(1-15 / 16)$
2000	$2.0000^{\prime \prime}(2)$
2125	$2.1250^{\prime \prime}(2-1 / 8)$
2250	$2.2500^{\prime \prime}(2-1 / 4)$
2375	$2.3750^{\prime \prime}(2-3 / 8)$
2500	$2.5000^{\prime \prime}(2-1 / 2)$
2625	$2.6250^{\prime \prime}(2-5 / 8)$
2750	$2.7500^{\prime \prime}(2-3 / 4)$
3000	$3.0000^{\prime \prime}(3)$
5500	$5.5000^{\prime \prime}(5-1 / 2)$

[^9]HUYETT.COM • 785-392-3017

PRIGCISION - MEIRIC

DESCRIPTION

Precision balls are used mainly in ball bearing designs and other demanding industrial applications. The surface is fine finished and through hardened for a high load capacity.

HOW TO IDENTIFY

1. Verify round design.
2. Select grade.
3. Measure diameter (A)
4. Build the part number from the chart below.

HOW TO BUILD A PART NUMBER

TO ORDER CHOOSE YOUR MATERIAL,

CODE	MATERIAL
BALLM16	Grade 200, 316 Stainless Steel, Plain
BALLM-1210	Grade 25, Chrome Steel, Plain
BALLM-1215	Grade 25, 440 Stainless Steel, plain
TOLERANCES	

CODE	DIAMETER
008	0.80 mm
010	1.00 mm
012	1.20 mm
015	1.50 mm
020	2.00 mm
025	2.50 mm
030	3.00 mm
035	3.50 mm
040	4.00 mm
045	4.50 mm
050	5.00 mm
055	5.50 mm
060	6.00 mm
065	6.50 mm

CODE	DIAMETER	CODE	DIAMETER
070	7.00 mm	140	14.00 mm
075	7.50 mm	150	15.00 mm
080	8.00 mm	155	15.50 mm
085	8.50 mm	160	16.00 mm
090	9.00 mm	170	17.00 mm
095	9.50 mm	180	18.00 mm
100	10.00 mm	190	19.00 mm
105	10.50 mm	200	20.00 mm
110	11.00 mm	210	21.00 mm
115	11.50 mm	220	22.00 mm
120	12.00 mm	230	23.00 mm
125	12.50 mm	240	24.00 mm
130	13.00 mm	250	25.00 mm
135	13.50 mm	260	26.00 mm

CODE	DIAMETER
270	27.00 mm
280	28.00 mm
300	30.00 mm
320	32.00 mm
340	34.00 mm
350	35.00 mm
360	36.00 mm
380	38.00 mm
400	40.00 mm
450	45.00 mm
500	50.00 mm

INDUSTRIAL PINS \& WIREFORMS

The Perfect Alignment for Every Application

Huyett features the world's most complete inventory of pins, pins, and more pins including every size and shape you can imagine in a wide range of materials in inch and metric sizes. Our Pins Catalog features clevis pins, three-point hitch pins, self-locking pins, cotter pins, hitch pin clips, wire forms, rolled pins, grooved pins, dowel pins, tapered pins, and assortments. We've also included technical data related to chemical and mechanical properties, hardness, heat treating, shear strength, platings and finishes, and common uses.

Clevis
Standard; SAE; Universal; Cotterless; Drilled and Grooved Headless; Bent; Rivet

Three-Point
Snap; Tab Lock; Coil Tension; Lynch; Round, Square, \& Red Handle Hitch; Lynch

Groove \& Taper
Groove: Type A, C, E, G, H, U; DIN Taper: Standard; External \& Internal Threaded

Positive Lock
Detent; Button Head; Ring Handle;
T-Handle; L-Handle

Spring
Slotted; Light, Medium, \& Heavy Duty Coiled; Toothed; Tension Bushing

Cotter
Standard; Military; Nonferrous;
Hammerlock; T-head; Wedgefast; Clinch, Bow Tie; Ring; Circle; Split Ring

Hitch Pin Clips Bridge; Double Loop; Grip; Hair; E-Clip; X-Ring; Tethers

Your Master Distributor for

1.141

Great Prices•Low Minimums•Easy Ordering

INCLUDES A COMPLETE LINE OF CLEVIS, THREE-POINT, POSITIVE LOCK, COTTER, HITCH PIN CLIPS, WIRE FORMS, DOWEL, GROOVED, SPRING, TAPER, AND MORE

Over 14,000 pins and wire forms in every size and shape you can imagine in a wide range of materials in both inch and metric sizes. Available in low quantities and assortments. We've also included specifications and technical data to help you choose the right part for your application.
Visit huyett.com to request or download a copy today.

IF ITS HARD TO FIND...

INDUSTRIAL FASTENERS \& COMPONENTS AND PREMIUM LIFTING HARDWARE

Looking for hard to find parts in inch or metric sizes? In stainless steel? Or in nonstandard sizes from big to little?
If so, we've got them, we'll get them, or we'll make them to your specifications.

PINS \$ WIRE FORMS

The Perfect Alignment for Every Application:

- Bent Pins
- Bridge Pins
- Clevis Pins
- Cotter Pins
- Detent Pins
- Dowel Pins
- Grip Pins
- Groove Pins
- Hair Pins
- Headless Pins
- Hitch Pins
- Lynch Pins
- Positive-Lock Pins
- Safety Pins
- Snap Pins
- Coiled/Slotted Spring Pins

- Taper Pins
- Tethers
- Assortments

RETAINING RINGS, COLLARS, \& SHIMS

Finding the Rings You Need is a Snap:

- Crescent Rings \& E-Clips
- Push-On Rings
- Grip Rings
- Housing Rings
- Snap Rings
- Interlocking Rings
- Bearing Lock Nuts
- Bearing Lock Washers
- Eaton Rings
- Spiral Rings
- Wave Springs
- Wire Rings
- Assortments

Contact our friendly sales team today at 785-392-3017 or sales@huyett.com

YOUHL FIND IT HERE

KEY STOCK \& MACHINE KEYS

Your Clutch Player to Keep Your Machines Running:

- Round Key Stock
- Square/Rectangle Key Stock
- Step Key Stock
- Form A Machine Keys
- Form AB Machine Keys
- Form B Machine Keys
- Gib Head Keys
- Hi-Pro Keys
- Woodruff Keys
- Assortments

GREASE FITTINGS \& ACCESSORIES

The Perfect Fit for Every Application:

- Grease Fittings
- Thread Forming Grease Fittings
- Flush Type Grease Fittings
- Drive Type Grease Fittings
- Button Head Grease Fittings
- Adapters
- Couplers
- Extensions
- Elbows
- Plugs \& Bushings
- Vents \& Breathers
- Assortments

PREMIUM LIFTING HARDWARE

For Everything Under the Hook and Off the Chain:

- Lifting Eye Bolts
- Lifting Eye Nuts
- Nut Eye Bolts
- Screw Eye Bolts
- Swivel Hoist Rings
- Turnbuckles
- Turnbuckle Accessories
- Rod Ends
- Clevises/Yokes
- Shackles/Hooks
- Rope/Chain Hardware
- Customs available at huyett.com/LiftingIQ

IF TIS HARD TO FIND...

ENGINEERED FASTENERS

WASHERS

HOSE CLAMPS

RIVET NUTS

SHAFT RETENTION

O-RINGS \ddagger PIPE PLUGS

YOU'L FIND IT HIERE

SHIMS \$ SPACERS

BEARINGS \$ BUSHINGS

NUTS, BOLTS, \ddagger SCREWS

FLAT STOCK \$ DRILL ROD

HUYETT.COM

Huyett.com/MyAccount/OrderHistory

* Free MTRs*
* Order Status
* Order Tracking Info
* Expected Ship Date
* Login or Register at huyett.com today to download Material, Compliance, and RoHS/REAC Certifications from your Account Order History Some Exclusions Apply.

PURVEYORS OF

 To Do:
Bank deposit

Sort plating

Change oil on truck Greyhound Bus Take IIP order to Greyliouston
$6 . L \cdot H U T I I$

EOS AND MIMNT - TM 9

Born Out of the Old Tin Shed

The Old Tin Shed houses the story of Huyett. According to newspaper accounts, a German immigrant named Guy Huyett bought the hardware stock of the Globe Department Store in 1899 and moved it to a location on Main Street in Minneapolis, Kansas. He incorporated the business in 1906, the date that we trace to our founding, over 100 years ago.
From 1906 until 1994, the shed sheltered our entire company. The shed was originally an old hotel that was hitched to a team of horses and drug a $1 / 4$ mile down South Concord Street so that Huyett could be closer to the local rail spur. Many of the images on the cover of this book come from our storied history in the shed.
Our story isn't unique... and that is exactly what we love about it. It is a story you have heard a hundred times before... a story filled with human drama, pain, struggle, and triumph. It is a story lived by millions of lucky people. It is the American Dream. During the Great Depression, Henry Hahn, successor to Guy Huyett, sold alfalfa seed to supplement lost hardware sales so that he could stay in business. Henry eventually turned the business over to his son Louis, who was a notorious entrepreneur in these parts. Later, Louis allowed his son Bob to join the firm, which, at the time was largely centered on the machinery bushing product line. On Sunday afternoons, locals would gather around an old oak tree and socialize. To pass time, they would count and wire tie rings of 25,50 , and 100 machinery bushings while sipping whiskey. The group was affectionately known as "the South Side Sunday Sippin' Society" or "SSSSS."

Soon Bob took to the road and expanded product lines to include, among other things, pins, key stock, grease fittings, snap rings, and more. Bob worked days packing and shipping orders and answering the phone while his wife Dolly worked nights pounding out invoices on a Smith Corona typewriter. Sometimes Bob would meet Dolly going to bed while Dolly was arising to start typing. Some customers were known to "appreciate" Dolly's penny-pinching ways and would mail coins taped to postcards so that Dolly would stop calling to collect for small billing differences.
Today, Huyett has grown into a highly entrepreneurial enterprise with an interest in personal improvement and commitment to community that is inherent to the spirit of the pioneers who made the Great American Desert into America's Breadbasket. We now manufacture a large part of our sales mix and are committed to improving our community and the life of our customers by executing to the principles of our humble past.
We call this our "Way of Life ${ }^{\mathrm{TM}}$ " and we are proud to have you as part of our lives. Our job is to make your job easier and we thank you for the opportunity.
G.L. Huyett ciaca 1939

[^0]: -•Depending on profile, size can vary over or under from nominal size.

[^1]: FOR DET,AILED SPECIFIC,ATIONS AND TOLER,ANCES, VISIT HUYETT.COM.
 Prices, materials, dimensions, tolerances, designs, and grades subject to change without notice. © 2022 Huyett

[^2]: I', 3', AND 6' STAINLESS STEEL AND PLATED KEY STOCK ARE MARKED FOR EASY IDENTIFIC,ATION

[^3]: Images are approximate actual size.

[^4]: FOR DET,AILED SPECIFIC,ATIONS AND TOLER,ANCES, VISIT HUYETT.COM.

[^5]: MILD STEEL CAN BE FILED FAIRLY EASILY AND LEAVES A VISIBLE RELIEF

[^6]: A FILE WILL TEND TO SKID
 ALONG THE SURFACE OF HARDENED STEEL

[^7]: FOR BEST RESULTS, WALL THICKNESS FOR SHIMS SHOULD BE AT LEAST THREE TIMES THE M,ATERIAL THICKNESS

[^8]: FOR DET,AILED SPECIFIC,ATIONS AND TOLER,ANCES, VISIT HUYETT.COM

[^9]: FOR DET,AILED SPECIFIC,ATIONS AND TOLER,ANCES, VISIT HUYETT.COM
 Prices, materials, dimensions, tolerances, designs, and grades subject to change without notice. © 2022 Huyett

